

- Spectral data points in a union of subspaces are self-expressive, i.e., $\mathbf{Y} = \mathbf{Y}\mathbf{Z}$
- Union of subspaces admits subspace-sparse representation [2]

tral Bands

- formation.

 $({oldsymbol{\phi}}^s)_k$

arg min $\{oldsymbol{\Phi}, oldsymbol{\lambda}_1, oldsymbol{\lambda}_2, oldsymbol{arphi}^s$ subject to

COMPRESSIVE SPECTRAL SUBSPACE CLUSTERING

CODED APERTURE DESIGN FOR COMPRESSIVE SPECTRAL SUBSPACE CLUSTERING

CARLOS HINOJOSA, JORGE BACCA AND HENRY ARGUELLO CARLOS.HINOJOSA@SABER. | JORGE.BACCA1@CORREO. | HENARFU@ } UIS.EDU.CO

CODED APERTURE DESIGN

In order to design the coding patterns matrix Φ , the following three design criteria are considered

1. Sensing Neighboring Spec-

• Performing the random sampling of neighboring spectral bands will better preserve the in-

• For each coding pattern ϕ^s , select two cutoff wavelengths $(\lambda_1^s,\lambda_2^s) \in \{0,1,\cdots,L-1\}$ at random such that $\lambda_1^s < \lambda_2^s$ and $\lambda_2^s - \lambda_1^s + 1 = \Delta$. Then

$$=\delta_{\lfloor\lambda_1^2/k\rfloor}\delta_{\lfloor k/\lambda_2^2\rfloor}\varphi_k^s,\quad(3)$$

where $\varphi^s \in \{0,1\}^L$, and δ_x is the Kronecker delta function.

 $\operatorname{Rank}(\mathbf{\Phi}) = S,$

Optimization Problem

$$f(\mathbf{\Phi}) = \|\mathbf{\Phi}^{\mathbf{T}}\mathbf{\Phi} - \mathbf{I}\|_{F}^{2} + \|\mathbf{\Phi}\mathbf{\Phi}^{\mathbf{T}} - \mathbf{I}\|_{F}^{2}$$
$$(\boldsymbol{\phi}^{s})_{k} = \delta_{\lfloor\lambda_{1}^{s}/k\rfloor}\delta_{\lfloor k/\lambda_{2}^{s}\rfloor}\varphi_{k}^{s}, \qquad (\mathbf{\Phi}^{s})_{k} = \lambda_{1}^{s} + \Delta - 1,$$

Given Φ and \mathbf{Y} , the proposed SSC which incorporates spatial information is formulated as follows [3]

$$|\mathbf{Z}||_{1} + \frac{\lambda}{2} ||\mathbf{R}||_{F}^{2} + \frac{\alpha}{2} ||\mathbf{Z} - \bar{\mathbf{Z}}||_{F}^{2}$$
(10)

$$\mathbf{Y} = \mathbf{Y}\mathbf{Z} + \mathbf{R}, \operatorname{diag}(\mathbf{Z}) = 0, \ \mathbf{Z}^{T}\mathbf{1} = \mathbf{1},$$

$$\int_{\text{Local 3D Window}} \psi \qquad \int_{\text{Local 3D Window}} \psi \qquad \int_{\text{Median value}} \psi \qquad \int_{\text{Median value}} \psi \qquad \int_{\text{Median coefficient matrix } \mathbf{Z}} \psi \qquad (10)$$

2. Preserving Similarities

• Assuming that the vectors has unit length, the similarity between two compressed measurements $\mathbf{y}_j = \mathbf{\Phi} \mathbf{f}_j$, $\mathbf{y}_{j'} = \mathbf{\Phi} \mathbf{f}_{j'}$, is defined as

similarity
$$(\mathbf{\hat{y}}_{j}, \mathbf{\hat{y}}_{j'}) = \mathbf{\hat{y}}_{j}^{T} \mathbf{\hat{y}}_{j'}$$
 (4)
= $\mathbf{\hat{f}}_{j}^{T} \mathbf{\Phi}^{T} \mathbf{\Phi} \mathbf{\hat{f}}_{j'}$ $j \neq j'$,

• If the columns of Φ are normalized, it is possible to decompose the matrix $\mathbf{\Phi}^T \mathbf{\Phi}$ as

$$\boldsymbol{\Phi}^T \boldsymbol{\Phi} = \mathbf{I} + \boldsymbol{\epsilon}, \qquad (5$$

where

and $\epsilon_{jj} = 0$.

(9)

$$\epsilon_{jj'} = \boldsymbol{\phi}_j^T \boldsymbol{\phi}_j' \quad j \neq j', \quad (\boldsymbol{e})$$

Algorithm Compressive Spectral Subspace Clustering

Proposed Design

- solving optimization problem in (9)
- : Solve the sparse optimization problem in (10).
- 2: Normalize the columns of Z as $\mathbf{z}_j \leftarrow \frac{\mathbf{z}_j}{\|\mathbf{z}_i\|_{\infty}}$
- $|{f Z}| + |{f Z}|^T$.
- 4: Apply SC [1] to the similarity graph. **Output:** Segmentation of the data: Y_1, \dots, Y_ℓ

- same.

where

3. Information Acquisition

• In order to better discriminate among the classes, new information from the underlying spectral scene should be acquired in each measurement shot.

• The coding patterns should be linear independent, i.e, the Φ matrix should be full rank.

• The number of measurements acquired from each spectral band should be approximately the

$$\boldsymbol{\Phi}\boldsymbol{\Phi}^{T}=\mathbf{I}+\boldsymbol{\mu},\qquad(7$$

$$\mu_{ij} = \boldsymbol{\phi} \boldsymbol{\phi}^T \quad i \neq j, \qquad (8)$$

and $\mu_{ii} = 0$.

Input: A set of CSI measurements acquired as $Y = \Phi F$, where the coding pattern matrix Φ is obtained by

3: Form a similarity graph representing the data points. Set the weights on the edges between the nodes as W =

VISUAL AND QUANTITATIVE RESULTS

NOISE AND SIMILARITY PRESERVATION ANALYSIS

REFERENCES

- [1] U. Von Luxburg A Tutorial on Spectral Clustering. Statis*tics and computing*, 17(4), 395-416.
- [2] E. Elhamifar and R. Vidal. Sparse Subspace Clustering: Algorithm, Theory, and Applications. *IEEE transactions on* pattern analysis and machine intelligence, 35(11), 2765-2781.
- [3] C. Hinojosa, J. Bacca and H. Arguello. Spectral Imaging Subspace Clustering with 3D Spatial Regularizer. Digital Holography and Three-Dimensional Imaging(pp. JW5E-7). Optical Society of America.

OUANTITATIVE EVALUATION OF THE DIFFERENT CLUSTERING RESULTS FOR THE AVIRIS INDIAN PINES IMAGE

Class	Random-design	Proposed-design	Full-data-SSC	Full-data
Corn-no-till	73.13	<u>70.45</u>	48.96	66.77
Grass	95.25	100	<u>98.60</u>	100
Soybeans-no-till	52.87	88.80	70.63	69.54
Soybeans-minimun-till	55.29	<u>60.52</u>	59.23	80.05
OA	63.83	73.07	62.62	76.16
AA	69.14	79.94	69.35	<u>79.09</u>
Kappa	49.26	62.65	47.58	65.89

OUANTITATIVE EVALUATION OF THE DIFFERENT CLUSTERING RESULTS WITH THE AVIRIS PAVIA UNIVERSITY IMAGE.

Class	Random-design	Proposed-design	Full-data-SSC	Full-data
Bitumen	18.60	88.37	0	90.70
Asphalt	<u>71.37</u>	67.25	33.84	80.26
Trees	<u>90.38</u>	88.46	100	<u>90.38</u>
Bricks	100	<u>99.68</u>	<u>99.68</u>	<u>99.68</u>
Bare Soil	46.78	<u>61.40</u>	36.26	66.67
Metal sheet	82.90	97.73	<u>91.00</u>	97.73
Meadows	<u>91.16</u>	100	55.02	100
Shadows	99.48	24.35	<u>98.45</u>	24.35
OA	78.72	<u>83.81</u>	71.45	86.58
AA	75.09	78.41	64.28	81.22
Kappa	72.63	<u>78.89</u>	62.95	82.50

SOURCE CODE

A GitHub repository with the Mat-Lab codes of this paper can be downloaded from this QR code

