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SPARSE SUBSPACE CLUSTERING

• Spectral data points in a union of subspaces are
self-expressive, i.e., Y = YZ

• Union of subspaces admits subspace-sparse
representation [2]

min
Z
‖Z‖1 (1)

s.t. Y = YZ

COMPRESSIVE SPECTRAL IMAGING

The acquisition of the compressed measure-
ments can be expressed as

Y = ΦF, (2)

where Φ =
[
φT

1 , · · · ,φT
s

]T and φs ∈ RL.

WORKFLOW CODED APERTURE DESIGN

In order to design the coding patterns matrix Φ, the following three design criteria are considered

1. Sensing Neighboring Spec-
tral Bands

• Performing the random sam-
pling of neighboring spectral
bands will better preserve the in-
formation.

• For each coding pattern φs,
select two cutoff wavelengths
(λs1, λ

s
2) ∈ {0, 1, · · · , L− 1} at

random such that λs1 < λs2 and
λs2 − λs1 + 1 = ∆. Then

(φs)k = δbλ2
1/kc

δbk/λ2
2c
ϕsk, (3)

where ϕs ∈ {0, 1}L, and δx is the
Kronecker delta function.

2. Preserving Similarities

• Assuming that the vectors has
unit length, the similarity be-
tween two compressed measure-
ments yj = Φfj , yj′ = Φfj′ , is
defined as

similarity(ŷj , ŷj′) = ŷTj ŷj′ (4)

= f̂Tj ΦTΦf̂j′ j 6= j′,

• If the columns of Φ are normal-
ized, it is possible to decompose
the matrix ΦTΦ as

ΦTΦ = I + ε, (5)

where

εjj′ = φTj φ
′
j j 6= j′, (6)

and εjj = 0.

3. Information Acquisition

• In order to better discriminate
among the classes, new informa-
tion from the underlying spectral
scene should be acquired in each
measurement shot.

• The coding patterns should be
linear independent, i.e, the Φ
matrix should be full rank.

• The number of measurements ac-
quired from each spectral band
should be approximately the
same.

ΦΦT = I + µ, (7)

where

µij = φφT i 6= j, (8)

and µii = 0.

Optimization Problem

arg min
{Φ,λ1,λ2,ϕs}

f(Φ) = ‖ΦTΦ− I‖2F + ‖ΦΦT − I‖2F

subject to (φs)k = δbλs
1/kcδbk/λs

2cϕ
s
k, (9)

λs2 = λs1 + ∆− 1,

Rank(Φ) = S,

COMPRESSIVE SPECTRAL SUBSPACE CLUSTERING

Given Φ and Y, the proposed SSC which incorpo-
rates spatial information is formulated as follows [3]

min
Z,R,Z̄

‖Z‖1 +
λ

2
‖R‖2F +

α

2
‖Z− Z̄‖2F

s.t. Y = YZ + R, diag(Z) = 0, ZT1 = 1,

(10)
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SOURCE CODE

A GitHub repos-
itory with the Mat-
Lab codes of this pa-
per can be downloaded
from this QR code

NOISE AND SIMILARITY PRESERVATION ANALYSIS

The figure below presents the overall clustering ac-
curacy as a function of the aggregated noise. The right
hand side figure presents the absolute error between the
spectral signatures and the CSI measurments similarities
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VISUAL AND QUANTITATIVE RESULTS
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