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ABSTRACT

Compressive spectral imaging (CSI) acquires random pro-
jections of a spectral scene. Typically, before applying any
post-processing task, e.g. clustering, it is required a computa-
tionally expensive reconstruction of the underlying 3D scene.
Therefore, several works focus on improving the reconstruc-
tion quality by adaptively designing the sensing matrix aim-
ing at better post-processing results. Instead, this paper pro-
poses a hierarchical adaptive approach to design a sensing
matrix of the single pixel camera, such that pixel clustering
can be performed in the compressed domain. Specifically,
in each step of the hierarchical model, a sensing matrix is
designed such that clustering features can be extracted di-
rectly from the compressed measurements. Finally, the com-
plete segmentation map is obtained with the majority voting
method in the partial clustering results at each hierarchy step.
In general, an overall accuracy of 78.94%, and 65.35 % was
obtained using the “Salinas”, and “ Pavia University” spectral
image datasets, respectively.

Index Terms— compressive spectral clustering, single
pixel camera, hierarchical clustering, matrix design

1. INTRODUCTION

Spectral imaging (SI) acquires two-dimensional spatial infor-
mation of a scene across a range of spectral wavelengths.
Compared to traditional RGB imaging systems, SI provides
more information about the pixels in the scene, which allows
the identification of several features of the target [1]. Exploit-
ing this fact, SI has emerged as a valuable tool for remote
sensing classification where the goal is to assign a group or
class to each pixel of the scene [2]. In particular, spectral clus-
tering methods have been successfully employed to spectral
image classification when the labeled samples are unavailable
or difficult to acquire [2]. On the other hand, the classifica-
tion task usually improves as the number of spectral bands
increases [3]. However, this requires sensing more informa-
tion, which makes spectral data acquisition and processing a
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challenging problem under traditional scanning-based meth-
ods.

Recently, compressive spectral imaging (CSI) has emerged
as a SI approach that acquires compressed projections of the
whole data cube instead of direct measurement of all the vox-
els. This allows to detect and reduce the dimensionality of the
scene in a single step. Consequently, the cost of storing, and
processing spectral images using CSI devices is significantly
reduced [4, 5]. To recover the spectral image from the com-
pressed measurements, different optimization algorithms that
solve the underlying ill-posed problem have been employed.
To name a few, the fast iterative shrinkage-thresholding algo-
rithm (FISTA) [6], the gradient projection for sparse represen-
tation (GPSR) [7], or the orthogonal matching pursuit (OMP)
[8] are state-of-the-art recovery algorithms. Although the
optimization algorithms mentioned above provide good per-
formance, they are computationally expensive and presents
slow converge, which limits CSI in terms of time [9, 10].

On the other hand, different works have focused on adap-
tively designing the set of coding patterns for CSI, with
the objective of better reconstructions that benefit post-
processing results [11]. However, recent works have shown
that post-processing tasks such as classification [12], cluster-
ing [13], and unmixing [14] can be performed directly on the
compressive domain bypassing the signal recovery stage. For
instance, [13] shows that it is possible to employ sparse sub-
space clustering directly from 3D-CASSI[15] measurements
acquired with a carefully designed matrix, which preserves
the subspace structure.

In this work, we propose a hierarchical approach to de-
sign a sensing matrix of the single pixel camera (SPC) [16]
such that clustering features are extracted directly from the ac-
quired compressed measurements. Specifically, at each level
of the hierarchy, a sensing matrix is designed as the prod-
uct of a Hadamard matrix and a decimation matrix. This de-
composition allows obtaining a set of features directly from
the compressed measurements exploiting the properties of the
Hadamard matrix.

In the proposed approach, the decimation matrix at a
given level is designed to group similar features of the pre-
vious level in segments. Therefore, the composite sensing
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Fig. 1. Sensing process of the single pixel camera (SPC) with
a point spectrometer.

matrix has less sampling vectors and it is intended to pro-
vide fewer and more compact features than those obtained
in the previous level. For this work the decimation matrix is
obtained using the k-means algorithm, however, other alter-
natives can be employed. Finally, a complete segmentation
map is obtained by performing majority voting on the partial
clustering results obtained using the set of features of each
hierarchy level. In general, an overall accuracy of 78.94%,
and 65.35 % was obtained using the “Salinas”, and “ Pavia
University” spectral image datasets, respectively.

2. CSI ACQUISITION SYSTEM

2.1. SPC Sensing Model

The proposed CSI classification approach in this paper is per-
formed on the compressed measurements acquired with the
single-pixel camera (SPC), which employs a point spectrom-
eter to obtain the spectral information [16]. Figure 1 depicts
the components and sensing process of the adopted SPC ar-
chitecture. Specifically, the objective lens focuses the input
3D scene F , with L spectral bands andM ×N spatial pixels,
onto the coded aperture T ∈ RM×N , that spatially modulates
each spectral pixel. The coded aperture T can be modeled as
a binary pattern, that blocks the light or lets it pass through
each pixel. In this work, these binary levels are either 1 and
−1, where the modulation effect caused by the −1 entries
can be practically implemented using an all ones coded aper-
ture measurement and subtract it from each captured snapshot
[17]. Then, the coded scene passes through the condenser
lens, which concentrates the light to a single spatial point, that
contains all the encoded data. Finally, a single point Whisk-
broom spectrometer is used as a detector to obtain the spectral
information. Mathematically, the discrete sensing process can
be modeled as

yl =

M∑
m=1

N∑
n=1

Tm,nFm,n,l, (1)

for l = 1 · · ·L, where yl represents the measurement corre-
sponding to the l-th band. Note that one coded aperture mod-

ulates all spectral bands uniformly, hence, for each band, the
sensing process can be rewritten in the standard form of linear
equations as

yl = hT fl, (2)

where h ∈ {1,−1}MN is the vectorization of the coded aper-
ture, given by h = [T1,1, T2,1, · · · , TM,N ], and fl is the vector
form of the l-th spectral band of F . Furthermore, it is possible
to capture several snapshots by employing a different coded
aperture pattern each time. Then, the multi-shot scheme for
each band is expressed in matrix form as

yl = Hfl, (3)

where H ∈ RK×MN , K is the number of shots, each row of
H =

[
hT
1 , · · · ,hT

K

]
is the vector form of the coded aperture

used on that particular shot, and yl = [y1, · · · yK ]
T .

In general, the sensing model for all spectral bands can be
stacked in a single vector as y = [yT

1 · · ·yT
L ]T , such that the

sensing model can be rewritten as

y = (I(L) ⊗H)[fT1 , · · · , fTL ]T = Ĥf , (4)

where Ĥ = IL⊗H, is a block diagonal matrix, IL represents
an L×L identity matrix, and ⊗ denotes the Kronecker prod-
uct. The compression ratio in this model is given by γ = K

MN ,
where γ ∈ [0, 1].

2.2. CSI Reconstruction

Typically, the following step after acquiring the SPC mea-
surements is to recover the underlying spectral scene. Given
that the amount of acquired measurementsKL is far less than
the number of 3D data cube entries to be estimated MNL,
the reconstruction problem to be solved becomes ill-posed
and, therefore it cannot be solved by directly inverting the
system in Eq. 4. The theory of compressive sensing pro-
vides an alternative solution method to recover the underly-
ing spectral scene F from the measurement set y, assuming
that f ∈ RMNL has a Ŝ-sparse representation in a given ba-
sis Ψ and there exists high incoherence between the sensing
matrix Ĥ and the basis Ψ. Therefore, the measurement set
y in Eq. 4 can be expressed as y = ĤΨθ, where f = Ψθ
and θ is a sparse vector with Ŝ � MNL nonzero entries,
such that f can be approximated as a linear combination of
only Ŝ columns of Ψ. Then, the inverse CS problem consists
of recovering θ such that the `2 − `1 cost function is mini-
mized, i.e., it looks for a sparse approximation of the spectral
data cube. Mathematically, the optimization problem can be
written as

f̃ = Ψ

{
arg min

θ
‖ĤΨθ − g‖22 + τ‖θ‖1

}
, (5)

where τ is a regularization constant.



2.3. Sensing Matrix Design

In general, the optimization problem described in Eq. 5 is
computationally expensive, and its complexity grows in pro-
portion to the data dimensions. Since several applications re-
quire fast spectral image reconstructions, recent works have
focused on developing fast, although with low precision, re-
covery methods [17, 18]. In particular, taking into account the
structure of Hadamard matrices, the work in [18] proposes to
design the sensing matrix for each band H as

H = W∆, (6)

where W ∈ {−1, 1}K×K is a Hadamard matrix, and ∆ ∈
RK×MN is a decimation matrix.

Recently, a fast spectral image recovery method was intro-
duced in [17], where authors proposed to design∆ by obtain-
ing superpixels from an RGB image which was acquired as
side information. Specifically, the method named FMR takes
advantages of the fact that the inverse of a Hadamard matrix
is its transposes and perform a fast low-resolution reconstruc-
tion for each spectral band as

f̃l = (1/K)∆̂WTyl = (1/K)∆̂WTW∆f l ≈ fl. (7)

Note that, instead of performing the complete reconstruction,
it is possible to directly extract features from the compressed
measurements. In particular, features from the l-th band can
be obtained as

f̄l = WTgl = ∆f l, (8)

where f̄l contains the average spectral information of pixels
grouped in segments given by the structure of the downsam-
pling matrix ∆. It is important to note that, similar as in [17],
in the following sections we assume that K = Nseg .

3. PROPOSED CSI CLUSTERING

Taking into account, the sensing matrix construction approach
presented in Eq. 6, it is possible to design the downsampling
matrix ∆ to efficiently extract clustering features from the
compressed measurements. In this section, we present an un-
supervised approach to perform both, ∆ matrix design and
clustering of the spectral image pixels by directly using the
compressed measurements. The complete workflow of the
proposed approach is depicted in Fig. 2.

3.1. Downsampling Matrix Design

In general, the binary matrix ∆ ∈ RNseg×MN groups the
M×N spectral pixels inNseg segments, such that each com-
ponent of the vector f̄l = ∆f l contains the average spectral
information of pixels grouped in one segment. More formally,
denote pe as the vector of size ne containing the indices of all
pixels belonging to the e-th segment. Then, the nonzero val-
ues of the e− th row of ∆, denoted in vector form as (δe)

T ,
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Fig. 2. Workflow of the proposed SPC sensing matrix design
and compressed measurements clustering.

Algorithm 1 Downsampling Matrix Design
Input: Nseg , F̄
Output: ∆

1: procedure DSAMPLING DESIGN(F̄, Nseg)
2: kidx ← k-means(F̄, Nseg) . kidx contains the segment labels
3: ∆← zeros(Nseg, length(kidx))
4: for e← 1 to Nseg do
5: pe ← find(kidx = e)
6: ne ← length(pe)
7: for j ← 1 to ne do
8: (δe)T(pe)j

= 1
ne

. Update each row of ∆
9: end for

10: end for
11: return ∆
12: end procedure

are determined by the entries of pe and the value of ne as
follows:

(δe)
T
(pe)j

=
1

ne
, for j = 1, · · · , ne, (9)

where (δe)
T
(pe)j

denotes the position in δe indexed by the j −
th entry of the vector pe.

The main idea of the proposed design of ∆ is to group
pixels such that similar spectral information is taken into ac-
count. As only the compressed measurements are available,
it is proposed to design ∆ in an iterative hierarchical fashion
such thatNseg decreases (more pixels are grouped in one seg-
ment) in each iteration and the previous design of ∆ is used
to redefine the new segments, see Algorithm 1.

In the first iteration, ∆ is designed such that all the pix-
els are grouped in Nseg

(1) square segments, which are deter-
mined without prior information. Once the compressed mea-
surements are acquired, the feature vector f̄l is obtained for
each spectral band l, hence the feature matrix F̄ is constructed



as
F̄ =

[
f̄1, · · · , f̄L

]
∈ RNseg×L, (10)

where the rows contain the average spectral information of
each segment. For the next it iterations, Nseg is selected as
Nseg

(it) < Nseg
(it−1) < · · · < Nseg

(1) and the k-means al-
gorithm is used to find the new segments with inputs F̄ and
Nseg , as the data matrix and the number of desired clusters,
respectively. Then, the pe vectors are built for each segment
e using the output of k-means, and the new ∆ matrix is ob-
tained using the Eq. 9.

3.2. Data Clustering

At each iteration of the main algorithm, the downsampling
matrix ∆ is constructed and it is used to obtain a partial
clustering of the pixels using the Spectral Clustering method.
Since, at each iteration, the number of segments Nseg is
decreased, this approach can be seen as a multiscale cluster-
ing of pixels. Furthermore, denoting Ns as the number of
scales or levels in the hierarchy, the compression ratio given
by using the SPC architecture and the proposed clustering
approach can be determined as

γ̃ =
1

MN

Ns∑
it=1

N (it)
seg . (11)

In order to perform the data clustering, we construct the
similarity graph G ∈ Rn×n using the k-nearest neighbor
approach described in [19]. Then, the cluster indices C̄ are
obtained by applying the spectral clustering to the similarity
graph. Finally, the cluster membership of all the spectral pix-
els in the full image are obtained by applying the upsampling
operator ∆T onto C̄, see Algorithm 2. Note that both, the
similarity graph construction and the spectral clustering com-
putation are performed on the feature matrix F̄. Hence, the
proposed approach boosts the computational performance.

Algorithm 2 Data Clustering
Input: F̄ ∈ RNseg×L, ∆ downsampling matrix, k clusters
Output: Segmentation of the spectral pixels: F1, · · · ,Fk

procedure DATA CLUSTERING(F̄,∆, k)
2: G← Build Sim Graph(F̄) . k-nearest neighbor graph

/ Obtain Cluster indices
4: C̄idx ← Spectral Clustering(G, k) . Spectral Clustering [19]

Cidx ←∆T C̄idx . Upsampling
6: end procedure

4. SIMULATIONS AND RESULTS

In this section, the performance of the proposed image clas-
sification method is evaluated. In particular, Pavia University
and the Salinas Valley data sets were used.
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Fig. 3. False-color images (a) and (d), ground truth maps
(b) and (e), and land-cover spectral signatures (c) and (f), for
Pavia University and Salinas Valley, respectively.

The Pavia University hyperspectral data set was sensed
over an urban area in northern Italy, by the Reflective Op-
tics System Imaging Spectrometer (ROSIS-03) airborne sen-
sor. The reference image is a section of 512× 192 pixels and
103 spectral bands, with a spatial resolution of 1.3 meters per
pixel and a spectral coverage ranging from 0.43 to 0.84 µm
wavelengths. Pavia University contains nine main land-cover
classes: asphalt, meadows, gravel, trees, metal sheets, bare
soil, bitumen, bricks, and shadows. Figure 3(a), (b) and (c)
shows a false-color version, the ground truth, and the spectral
signatures of the dataset, respectively.

The Salinas dataset was collected by the airborne visi-
ble/infrared imaging spectrometer (AVIRIS) on Salinas Val-
ley, California, USA. The reference image is also a section of
512 × 192 pixels and 204 spectral bands in the range of 0.24
to 2.40 µm. The Salinas ground truth contains 16 land-cover
classes: broccoli green weeds 1, broccoli green weeds 2, fal-
low, fallow rough plow, fallow smooth, stubble, celery, grapes
untrained, soil vineyard develop, corn senesced green weeds,
lettuce romaine 4 wk, lettuce romaine 5 wk, lettuce romaine
6 wk, lettuce romaine 7 wk, vineyard untrained, and vineyard
vertical trellis. The ground truth is shown in Fig. 3 (e), where
the spectral signatures of each class are presented in Fig. 3
(f).

The first two experiments were performed to show the
sensitivity of the main parameters of the proposed method,
i.e., the number of neighbors in the data clustering step and
the number of scales or levels in the hierarchy sensing model.
In both experiments, the number of segments were fixed as
N

(1)
seg = 8192, N (2)

seg = 6144, N (3)
seg = 4096, N (4)

seg = 3072,
N

(5)
seg = 2048, and N (6)

seg = 1024, for it = 1, · · · , 6, i.e., the
maximum level of hierarchy was 6. In the first experiment,
the sensing ratio was fixed to 25%, whose value was obtained



Fig. 4. Overall clustering accuracy as a function of the num-
ber of Neighbors in the proposed method

Fig. 5. Overall clustering accuracy as a function of the num-
ber of scales in the proposed method

using Eq. 11, and the number of neighbors was varied from
4 to 32. The obtained overall accuracy curve of classification
results, along with the mean and variance for each neighbor, is
depicted in Fig. 4, where the presented results are the average
of 20 trials. It can be observed that the largest variance occurs
when using 4 neighbors as well as the best performance is
obtained when using 24 neighbors for both datasets. Taking
into account the previous results, in the second experiment,
the number of neighbors is fixed as 24, and the number of
scales was varied from 3 to 6. The obtained results are shown
in Fig. 5, where it is observed that as the number of scales
increases, the quality of classification improves as expected
with the proposed method.

In the last experiment, the results obtained with the pro-
posed method is compared with the approach of using the
same hierarchical scheme, but different designs of ∆. The
first design, which we refer as “non-designed ∆”, corre-
sponds to the first level of the proposed hierarchical approach,
i.e., ∆ is designed such as that all the pixels are grouped in
square segments. The second design, which we refer as
“FMR+Clustering”, corresponds to the approach described in
[17], where ∆ is designed using super-pixels obtained from
an RGB image which was acquired as side information. Note

Fig. 6. Visual clustering results on Pavia University (top) and
Salinas data sets (bottom). The figure shows the ground truth
and the results for the evaluated methods.

that the FMR method requires image reconstruction before
performing spectral clustering. Figure 6, and Tables 1 and
2 show the visual and quantitative results obtained with the
methods mentioned above. Specifically, tables show the nu-
merical results for each of the land-cover classes (producer’s
accuracy), overall accuracy (OA), average accuracy (AA),
and Kappa (κ) coefficients [20], where the best value of each
row is shown in bold font and the second best is underlined.
All the results, except the Kappa coefficients, are given in
percentage. As observed, the proposed hierarchical method
exhibits the highest increment in classification performance
compared to the other approaches. Besides, note that the
reconstruction time is avoided.

Class Non-Designed ∆ FMR+Clustering Proposed

Broccoli-green-1 98.11 98.11 98.11
Broccoli-green-2 98.34 98.77 97.67
Fallow 7.91 74.62 8.70
Fallow-rough-plow 96.48 0.00 95.91
Fallow-smooth 92.91 96.27 93.09
Stubble 90.05 77.14 97.07
Celery 47.20 99.17 98.07
Grapes-untrained 78.91 93.95 55.15
Soil-vineyard-develop 93.42 0.48 95.74
Corn-senesced-green-weeds 65.34 59.43 50.27
Lettuce-romaine-4wk 19.19 2.15 28.84
Lettuce-romaine-5wk 0.00 100.00 99.53
Lettuce-romaine-6wk 0.00 97.71 96.51
Lettuce-romaine-7wk 0.00 83.27 89.07
Vineyard-untrained 0.00 3.10 67.94
Vineyard-vertical-trellis 90.59 82.79 77.37

AA 54.90 66.68 78.07
OA 62.55 63.12 76.52
Kappa 0.58 0.59 0.74

Table 1. Quantitative Results of different design approaches
of ∆ for the Salinas Valley Image



Class Non-Designed ∆ FMR+Clustering Proposed

Asphalt 61.29 91.75 90.21
Meadows 26.30 21.98 81.44
Gravel 0.86 0.00 4.05
Trees 77.84 7.17 41.87
Metal sheets 87.43 71.23 86.77
Bare soil 30.11 34.08 32.63
Bitumen 92.03 0.00 0.00
Bricks 79.63 93.97 84.03
Shadows 89.14 98.57 92.12

AA 60.51 46.53 57.01
OA 49.19 43.86 65.35
Kappa 0.42 0.36 0.57

Table 2. Quantitative Results of different design approaches
of ∆ for the Pavia University Image

5. CONCLUSIONS

This work presented an approach to perform clustering di-
rectly on the compressed measurements. In particular, we
proposed an unsupervised and hierarchical method that takes
advantage of Hadamard matrices structure and designs the
sensing matrix of the SPC architecture such that the image
reconstruction is avoided, enabling to extract clustering fea-
tures. In general, the presented results showed that overall ac-
curacy of 78.94%, and 65.35% was obtained using the “Sali-
nas”, “ Pavia University”, and “Pavia Center” spectral image
datasets, respectively.
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