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Abstract—Compressive spectral imaging (CSI) acquires com-
pressed observations of a spectral scene by applying different
coding patterns at each spatial location and then performing a
spectral-wise integration. Relying on compressive sensing, spectral
image reconstruction is achieved by using nonlinear and relatively
expensive optimization-based algorithms. In the CSI literature,
several works have focused on improving reconstructions quality
by properly designing the set of coding patterns. However, signal
recovery is not actually necessary in many signal processing ap-
plications. For instance, assuming that compressed measurements
with similar characteristics lie on the same subspace, unsupervised
methods such as subspace clustering can be used to separate them
into the same cluster. Since the structure of compressed measure-
ments is defined by the applied codification, it is possible to improve
clustering performance. This paper proposes to design a set of cod-
ing patterns such that inter-class and intra-class data structure is
preserved after the CSI acquisition in order to improve clustering
results directly on the compressed domain. To validate the coding
pattern design, an algorithm based on sparse subspace cluster-
ing (SSC) is proposed to perform clustering on the compressed
measurements. The proposed algorithm adds a three-dimensional
(3-D) spatial regularizer to the SSC problem exploiting the spa-
tial correlation of spectral images. In general, an overall accuracy
up to 83.81% is obtained, when noisy measurements are assumed.
In addition, a difference of at most 4% in terms of overall accu-
racy was observed when comparing the clustering results obtained
by the full 3-D data with those achieved using CSI measurements
acquired with the proposed coding pattern design.

Index Terms—Compressive spectral imaging, coded aperture
design, spectral subspace clustering.

I. INTRODUCTION

S PECTRAL imaging senses two-dimensional (2D) spatial
information of a scene across a range of spectral wave-
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lengths. These data sets are regarded as three-dimensional (3D)
images, where two of the coordinates correspond to the spatial
domain and the third one represents the spectral wavelengths.
Traditional sensing techniques construct a spatio-spectral data
cube by scanning the scene, either spectrally or spatially in pro-
portion to the desired spatial or spectral resolution, which in
turn, increases acquisition times. Exploiting the fact that dif-
ferent objects in the scene reflect, scatter, absorb, and emit
electromagnetic energy in distinctive patterns related to their
molecular composition, spectral imaging has emerged as a valu-
able tool for remote sensing applications including agriculture,
urban planning, military surveillance, etc [1], [2]. A common
task underlying these applications is to detect and classify dif-
ferent materials based on their reflectance spectrum or spectral
signatures of the pixels (a.k.a spectral pixels).

Assuming that spectral signatures with similar characteristics
lie in the same low-dimensional subspace, subspace clustering
theory can be used for modeling the spectral image classification
problem [3]. Different methods for subspace clustering, which
take into account the multi-subspace structure of the data, have
been proposed in the past two decades. Among them, sparse
subspace clustering (SSC) constructs a similarity matrix by ex-
pressing each data point as a linear combination of all other
points in the dataset and then, imposing a sparsity restriction
over the coefficients matrix [3]–[6]. Once obtained the sparse
coefficient matrix, the segmentation of data points is performed
using the spectral clustering (SC) algorithm. In general, spectral
image clustering is a very difficult task due to the inherent data
complexity and computational cost, which grows in proportion
to the dimensions of spectral data sets. In addition, processing
such high dimensional data also requires huge computational re-
sources and storage capacities. Therefore, a preprocessing step
to reduce the dimension of the spectral imagery is often used in
order to perform different image processing techniques[7].

Recently, compressive spectral imaging (CSI) has emerged
as a new spectral imaging approach which acquires compressed
2D projections of the entire data cube rather than direct mea-
surements of all voxels [8]. This approach allows to sense and
simultaneously reduce the data dimensionality without further
processing steps [9], [10]. Therefore, the cost of sensing, storing,
transmitting and processing spectral images using this method
is significantly reduced. Until now, different CSI sensing meth-
ods have been proposed to compress spectral images [9]–[13].
Particularly, in this work the spatial-spectral coded compres-
sive spectral imager (3D-CASSI) is adopted. This CSI sensing
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Fig. 1. CSI subspace clustering workflow. Spectral signatures of the scene are
encoded by the coded aperture ensemble before the spectral-wise integration.
Proper coded aperture design to preserve spectral similarities, allows to perform
clustering directly on the compressed measurements.

scheme modulates the spectral data cube in spatial and spectral
dimensions using a 3D coded aperture (ensembles of 2D coded
apertures) or a coding pattern array. Then, the coded spectral
data cube is integrated along the spectral dimension such that
each spatial position of the acquired measurements contains
the compressed information of a single coded spectral signa-
ture [11]. Works in [14]–[16] describe different architectures
considered as 3D-CASSI scheme (see [11] for more details).

Because the coded aperture determines how the spectral pix-
els are encoded, it is possible to define the general structure
of the acquired compressed data by properly designing the 3D
coded aperture ensemble. Assuming that the compressed mea-
surements with similar characteristics lie on the same subspace,
this work focuses on the problem of spectral pixels subspace
clustering, directly from compressed measurements, without
recovering the original spectral scene. Specifically, our main
contribution is to provide a coded aperture design such that the
information, and the similarity between the spectral signatures,
is approximately preserved after the sensing process, enhancing
the spectral pixel clustering directly in the compressed mea-
surements. The proposed design is based on three criteria: con-
sidering that surface-emitted spectral signatures are, in general,
relatively smooth functions of the wavelength, only neighbor-
ing spectral bands are sensed; the cosine of the angle between
each pair of spectral pixels should be approximately preserved
in the compressed domain; each 3D coded aperture realization
should extract new information from the scene. Once obtain-
ing the designed set of coded apertures, 2D projections of the
spectral image data are acquired using the 3D-CASSI sensing
approach. Finally a sparse subspace clustering-based algorithm
is proposed in order to perform the spectral image clustering.
Such algorithm incorporates a 3D spatial regularizer in the SSC
problem to exploit the spatial correlation of spectral images.
The overall CSI subspace clustering workflow is depicted in
Fig. 1. Despite recent works have successfully performed sub-
space clustering on compressed measurements [17], this is the
first work that particularly design a binary coded aperture en-
semble to improve clustering results directly on CSI measure-
ments without recovering the underlying spectral scene.

Fig. 2. CSI sensing approach used for compressed measurements acquisition
at snapshot s.

In the following sections, the mathematical model of the CSI
sensing approach is described. Then, the coding pattern design
is formulated as an optimization problem and an algorithm to
solve it is also developed. Further, theoretical bounds on the
�2 norm preservation of the spectral pixels after being com-
pressed by the proposed patterns is provided. Simulations are
included to analyze the performance of the presented spectral
image clustering approach.

II. COMPRESSED MEASUREMENTS ACQUISITION

Denote F as the spatio-spectral input data cube, with M ×N
spatial dimensions, L spectral bands and entries denoted as
Fm,n,k , where m and n index the spatial coordinates, and k
determines the k-th spectral band. As shown in Fig. 2, the 3D-
CASSI first modulates the voxels of the spectral scene using a
3D coded aperture Cs , whose entries are indexed as Cs

m,n,k .
Then, the coded spectral scene is integrated in the focal plane
array (FPA) detector, along the spectral axis. In CSI it is possible
to acquire S � L measurement shots, each one employing a
different coded aperture, such that different measurements of
the spectral data cube are acquired each time. Therefore, the
output of the sensing process, at the (m,n)-th detector pixel
and a specific snapshot s, can be expressed as

Ŷ s
m,n =

L−1∑

k=0

Fm,n,kCs
m,n,k . (1)

Note that to each spatial location of Cs is assigned a coding
pattern φs ∈ RL , with entries (φs)k ∈ {0, 1}, that modulates a
spectral pixel in that particular position before being integrated
at the FPA detector. Further, observe that there is a finite number
of coding patterns randomly distributed in Cs .

At each measurement shot, the spectral pixels are encoded
differently using distinct coding patterns, hence new informa-
tion is acquired from the underlying data cube. Denoting P
as the number of different coding patterns distributed on Cs , if
the number of measurement shots S is greater than P , then some
pixels are oversampled, thus redundant information is acquired.
On the other hand, if S < P clustering becomes hard since the
similarity among two spectral pixels in the same cluster may
decrease if they are encoded (projected) differently. Finally, if
S = P the 3D coded aperture for each measurement shot can
be designed such that a particular pixel is modulated once by a
different coding pattern in a particular snapshot, acquiring new
information each time.



HINOJOSA et al.: CODED APERTURE DESIGN FOR COMPRESSIVE SPECTRAL SUBSPACE CLUSTERING 1591

Fig. 3. Rearrangement of the matrix Ŷ such that the s-th row of Y contains
the compressed measurements acquired with the s-th coding pattern φs .

The set of compressed measurements from (1) can be ar-
ranged in a S ×MN matrix Ŷ = [[Ŷ 0

0,0 , Ŷ
0
1,0 , . . . , Ŷ

0
0,1 , . . . ,

Ŷ 0
(M−1),(N−1) ]

T , . . . , [Ŷ (S−1)
0,0 , . . . , Ŷ

(S−1)
(M−1),(N−1) ]

T ]T , where
each column value corresponds to a compressed spectral sig-
nature. Note that, each row of Ŷ contains the compressed in-
formation (spectral responses) of the pixels acquired in the s-th
snapshot. However, column vectors of Ŷ may contain the mea-
surement acquired with a specific coding pattern φs in different
rows since, in a particular snapshot, all the spectral pixels are not
necessarily encoded by the same coding pattern. Then, the ma-
trix Ŷ is not convenient for SSC as its structure makes difficult
to discriminate among compressed measurements. Therefore,
using S = P , the entries of Ŷ are rearranged to form a new ma-
trix Y, such that each row contains the compressed information
acquired with a specific coding pattern φs . Note that this rear-
rangement is possible only when S = P since in this case it can
be guaranteed that, at a specific snapshot, one pixel is encoded
only once by a different pattern and, at the end of the sensing
procedure, all pixels were encoded by the whole set of S coding
patterns. Formally, the rearrangement can be expressed as

Ys,j = Ŷs ′,j if Ŷs ′,j = (φs)T fj ∀s′,

for s, s′ = 0, . . . , S − 1, where fj ∈ RL denotes the j-th spec-
tral signature for j = 0, . . . , MN − 1. This rearrangement, de-
picted in Fig. 3, preserves the structure of the underlying
high dimensional data improving the subspace clustering re-
sults. Alternatively, define the matrix of S coding patterns as
Φ = [φ0 ,φ1 , . . . φS−1 ]T then, the problem of acquiring and
rearranging the measurements Ŷ can be succinctly expressed as
the random projection

Y = ΦF, (2)

where F = [[F0,0,0 ,F1,0,0 , . . . ,F0,1,0 , . . . ,F(M−1),(N−1),0 ]T ,
. . . , [F0,0,(L−1) , . . . , F(M−1),(N−1),(L−1) ]T ]T is a L×MN
matrix whose columns are the spectral signatures fj of the data
cube and Φ can be viewed as the projection matrix.

A typical procedure after the compressed measurements ac-
quisition is signal recovery, which is achieved using nonlinear
and relatively expensive optimization-based or iterative algo-
rithms [18], [19]. CSI signal recovery procedure is explained in
[8]. The aim of this work is to avoid the computational cost of
recovering all the data cube by performing all the spectral im-
age clustering directly on the compressed measurements using
a set of designed coded apertures. Since the coding patterns φs

determine the structure of Cs , designing the set of 3D coded
apertures is equivalent to the coding pattern design.

III. CODING PATTERN DESIGN FOR CSI
SUBSPACE CLUSTERING

Based on the concept of affinity [20], which characterizes
the similarity between two subspaces, it has been theoretically
proven and numerically verified that several dominant subspace
clustering algorithms could successfully perform clustering on
the compressed data [21]–[23]. These works employ the ran-
dom projection method[24], using Gaussian random matrices,
in order to acquire the dimensionality-reduced or compressed
data. Such random projection matrices preserve the structure of
high dimensional data, hence it is possible to directly learn from
the low dimensional data [25]. In addition, recent works in [26],
[27] have theoretically proved that, with high probability, the
Euclidean distance and principal angles between two subspaces
remain almost unchanged after Gaussian random projections,
which allows to perform sparsity related signal processing tasks
directly on compressed measurements. However, in CSI, the
measurements are typically acquired using sensing or projection
matrices whose entries are not Gaussian. In addition, although
work in [23] provides theoretical results for other compression
matrices which are not necessarily Gaussian, these do not take
into account the structure of hyperspectral data. In this section,
an coding pattern design for CSI, which takes into account the
hyperspectral data structure, is presented. The proposed design
considers the way in which the spectral scene information is
encapsulated in the CSI measurements. Further, such design not
only allows to learn from the compressed data but also preserves
its �2 norm and the spectral signature similarities among vec-
tors on the compressed domain. Additionally, an algorithm to
generate the coding matrix Φ is developed in this section.

A. Coding Pattern Design

Recent works in CSI have focused on properly designing the
coding patterns in order to better reconstruct the underlying
spectral scene [12], [28]. These designs use the restricted isom-
etry property (RIP) as the main optimization criterion. On the
other hand, because the aim of this work is to perform clas-
sification on the compressed measurements, the design of the
coding patterns must preserve the similarity among the spectral
signatures. In order to design the coding patterns matrix Φ, the
following three design criteria are considered.

1) Sensing Scheme: The entries of the matrix Φ can be cho-
sen from a Bernoulli distribution (Φ)s,k ∼ Be(p). Therefore,
the entries of the s-th coding pattern can be expressed as

(φs)k =

{
1, with probability p

0, with probability q,
(3)

for k = 0, 1, . . . , L− 1, where q = 1− p. A projection matrix
with this structure simply carries out a random sampling on the
data vectors, across all the spectral bands, before performing
element-wise addition. Considering that surface-emitted spec-
tral signatures are, in general, relatively smooth functions of
wavelength [29], acquiring the information of different sets of
adjacent spectral bands at each snapshot will preserve the orig-
inal signal structure. Therefore, the intuition is to perform the
sampling of neighboring spectral bands instead of randomly
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sampling all the spectral data vectors, which could add outliers
to the measurements.

For each coding pattern φs , two cutoff wavelengths λs
1 , λ

s
2 ∈

{0, 1, . . . , L− 1} are selected, such that λs
1 < λs

2 and λs
2 − λs

1 +
1 = Δ, where Δ is defined as the coding pattern bandwidth.
Then, the band-structured matrix can be expressed as

(φs)k =

{
ϕs

k , ⇐⇒ λs
1 ≤ k ≤ λs

2

0, otherwise,
(4)

where ϕs ∈ {0, 1}L is a L-long vector whose nonzero elements,
within the region delimited by λs

1 and λs
2 , represent the sampled

spectral bands of the pixels. Equation (4) can be alternatively
written as

(φs)k = δ
λs
1 /k�δ
k/λs

2 �ϕ
s
k , (5)

where δx is the Kronecker delta function, i.e., δx is equal to 1
only when x = 0.

2) Preserving Similarities: The success of subspace cluster-
ing on the compressed measurements depends fundamentally on
how the coding matrix Φ affects the mutual similarities of the
spectral signatures. A usual measure of similarity among two
vectors is the cosine of the angle between them. Then, assum-
ing that the vectors have unit length, the similarity between two
compressed measurements yj = Φfj , yj ′ = Φf j ′ is defined as

sim (yj ,yj ′) = yT
j yj ′ = fT

j ΦT Φfj ′ j �= j′, (6)

where yj ∈ RS and fj ∈ RL correspond to the j-th column of
the matrices Y and F, respectively. If the columns of Φ are
normalized, it is possible to decompose the matrix ΦT Φ as

ΦT Φ = I + Θ, (7)

where

Θkk ′ = (Φk )T Φk ′ k �= k′, (8)

Φk denotes the k-th column of Φ, and Θkk = 0. Observe that
the matrix Θ collects all the entries outside the diagonal of
ΦT Φ. Therefore, if Θjj ′ = 0 ∀j, j′, the matrix ΦT Φ would be
equal to I and the similarities of the spectral signatures would
be exactly preserved in the compressed measurements. How-
ever, because the matrix Φ has more columns than rows, all the
entries of Θ could be mostly small but not equal zero [30]. Con-
sidering that a linear mapping such as that in (2) can cause sig-
nificant distortions in the compressed measurements if ΦT Φ is
not approximately I, the proposed coded aperture design should
minimize the entries of Θ.

3) Information Acquisition: In order to better discriminate
among the classes, new information from the underlying spectral
scene should be acquired in each measurement shot, hence the
coding patterns should be as different as possible, and the matrix
Φ should be full rank. Note that if all coding patterns (rows of Φ)
are different, i.e. a spectral band is only sensed once by a unique
coding pattern, the values outside the diagonal of ΦΦT should
be zero and the diagonal values will be constants related to the
number of nonzero elements in each coding pattern [12]. Since
it is desired that all coding patterns have the same bandwidth

Δ, ΦΦT will approximate to the matrix ΔI. Then, the matrix
ΦΦT can be decomposed as

ΦΦT = I + Λ, (9)

where

Λss ′ = φs(φs ′)T s �= s′, (10)

and Λss = Δ− 1. Therefore, the minimization of the entries of
Λ should be considered in the coded aperture design.

B. Optimization Algorithm for Coding Patterns Design

Taking into account the previous considerations, the proposed
coding pattern design can be succinctly expressed as the follow-
ing optimization problem

arg min
{Φ ,λ1 ,λ2 ,ϕs }

f(Φ) = ‖ΦTΦ− I‖2F + ‖ΦΦT − I‖2F

subject to (φs)k = δ
λs
1 /k�δ
k/λs

2 �ϕ
s
k ,

λs
2 = λs

1 + Δ− 1,

Rank (Φ) = S, (11)

for s = 0, . . . , S − 1, k = 0, . . . , L and where λ1 = [λ0
1 , . . . ,

λS−1
1 ], λ2 = [λ0

2 , . . . , λ
S−1
2 ] . This optimization problem can

be efficiently solved with the procedure summarized in
Algorithm 1. Specifically, lines 2 to 4 generate the first coding
pattern φ0 , which has a band structure with a predefined band-
width Δ. Then, lines 6–9 are intended to minimize the number
of times a spectral band is sensed. Specifically, the algorithm
counts how many spectral bands have been sensed in a certain
bandwidth and then λs

1 is chosen uniformly at random from the
set of banded sections with less information A, complying with
the criteria of subsection III-A3. Finally, we choose the position
in which the inner products are minimized. This is attained by
minimizing the elements outside the diagonal, in detail, lines
13–17 count the inner products in the neighborhood. Then, l is
sampled uniformly at random from the set that minimizes the
inner product (B) to assign a 1 in the coding pattern position l.
As observed in Fig. 4, a random design of Φ entries may lead to
oversample a subset of spectral bands (green line) while leaving
some spectral bands unsampled (red line).

Note that, Algorithm 1 is a greedy algorithm, since we make
locally choices at each stage with the intent of minimizing the
objective function. In Theorem III.1, we provide theoretical
guarantees that the final result of Algorithm 1 tends to a station-
ary point.

Theorem III.1: Assuming that Φ0 = 1, where 1 is an all-
ones matrix, the sequence {Φit }it ∈N generated by Algorithm 1
converge to a stationary point. Further, this stationary point
satisfies the three equality constraints in (11).

Proof: The proof can be found in Appendix A (see Supple-
mentary Material).

C. Theoretical Results

In the previous section, the optimization algorithm for cod-
ing pattern design, proposed in (11), seeks at improving the
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Fig. 4. Examples of coding patterns generated by the proposed (left) and
random (right) design, respectively.

Algorithm 1: Coding Patterns Design.
Input: Number of bands L, number of shots S, bandwidth

Δ > 0.
Initialization :

1: Φ0 ← 1S,L

2: Randomly select λ0
1 , λ

0
2 such that λ0

2 > λ0
1 with

λ0
2 − λ0

1 + 1 = Δ
3: Select ϕs ∈ RL such that ϕs

k ∼ Be( 1
2 )

4:
(
φ0)

k
← δ
λ0

1 /k�δ
k/λ0
2 �ϕ

0
k � Banded Structure

5: for it ← 1 to S − 1 do
6: for i← 0 to (L−Δ) do
7: ui ←

∑it

s ′=0
∑i+Δ−1

k=i (φs ′)k � Count sensed
spectral bands

8: end for
9: A← arg mini ui � Λ minimizer set

10: λ
it
1 ∼ U [A] � λ

it
1 is sampled uniformly at random

from set A
11: λ

it
2 = λ

it
1 + Δ− 1

12: �̃ = 0
13: for i← λ

it
1 to λ

it
2 do

14: ϕit
i ← 0 � zero values in the bandwidth

15: b�̃ ←
∑it

s ′=0
∏i

k=(i−1)(φ
s ′)k � Counter of inner

products
16: �̃ = �̃ + 1
17: end for
18: for ĩ← 0 to 
 1

2 Δ� do
19: B ← arg min�̃ b�̃ � Θ minimizer set
20: l ∼ U [B] � l is sampled uniformly at random

from set B
21: ϕit

λ
i t
1 + l−1

← 1

22: bl ←∞
23: end for
24:

(
φit

)
k
← δ
λi t

1 /k�δ
k/λ
i t
2 �ϕ

it

k

25: end for
Output: Φ = [φ0 ,φ1 , . . . φS−1 ]T

Fig. 5. Example of Φ, Φ̂ and J structure, using S = 3, L = 10 and Δ = 7.
Note that the first one-valued diagonal in J will place the first random vector,
of length Δ = 7, within columns 4–10 of Φ.

Φ matrix orthogonality by minimizing f(Φ). Then, it is ex-
pected that, with high probability, the main angles between the
projected subspaces are preserved, i.e., the separability among
subspaces is preserved. In this section, it is shown that if the
SSC �1 minimization program (described in the next section,
see (15)) recovers a subspace-sparse solution for the spectral
pixels F, then it will also recover a subspace-sparse solution for
the compressed pixels Y.

First observe that the matrix Φ can be decomposed as the
product of two matrices as Φ = Φ̂J, where Φ̂ ∈ RS×SΔ is a
block rectangular matrix with vectors ϕ̂s ∈ {0, 1}Δ placed in
diagonal form, where ϕ̂s correspond to the values in the select
bandwidth of ϕs for each s. Mathematically, the entries of the
s-th row of Φ̂ can be written as

(Φ̂
s
)r̂ =

{
(ϕ̂s)r̂ mod Δ , if s = 
r̂/Δ�
0, otherwise,

(12)

for r̂ = 0, . . . , SΔ− 1. Moreover, the matrix J has one-valued
diagonals where each diagonal chooses the position of a specific
vector ϕ̂s within the s-th row of Φ. Taking this into account,
the entries of the r̂-th row of J can be written as

(Jr̂ )k =

{
1, if k = λ


r̂ /Δ�
1 + r̂ mod Δ

0, otherwise,
(13)

for k = 0, . . . , L− 1. Note that the position of one-valued di-
agonals in J is determined by the selected cutoff wavelengths
λ

r̂ /Δ�
1 obtained using Algorithm 1. In particular Fig. 5 illustrates

the structure of the matrices Φ, Φ̂ and, J ∈ RSΔ×L for S =
3, L = 10 and Δ = 7. Additionally, note that J can be viewed
as a band-selection matrix which selects neighboring bands on
the spectral pixel fj and groups them in blocks, as Jf j = f̄j =
[(f̄ 0

j )T , (f̄ 1
j )T , . . . , (f̄S

j )T ], with f̄j ∈ RSΔ and f̄ s
j ∈ RΔ , hence

if SΔ ≥ L, then Rank(F) = Rank(F̄), where F̄ = JF.
In [5], the authors of SSC provide recovery conditions under

which, for data points fj that lie in a union of linear subspaces,
the optimization program in (15) recovers subspace-sparse rep-
resentation of the data, where nonzero elements correspond to
points belonging to the same subspace. Particularly, denote F̄d

as the matrix containing all data points f̄j from the subspace Sd

with dimension Qd . Similarly, denote F̄−d as the matrix con-
taining data points in all subspaces except Sd . Further, let Wd be
the set of all full-rank submatrices F̃d ∈ RSΔ×Qd of F̄d . From
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[5, Theorem 3], if the condition

max
F̃d ∈Wd

σ̃Qd
(F̃d) >

√
Qd max

d �=d ′
cos(θd,d ′), (14)

for a column-normalized data holds, then for every f̄j in
the subspace Sd , the �1-minimization in (15) recovers a
subspace-sparse solution. In (14), θj,j ′ is the first principal an-
gle between Sd and Sd ′ and σ̃Qd

(F̃d) = 1/‖(F̃T
d F̃d)−1F̃T

d ‖2,2

denotes the Qd -th largest singular value of F̃d . Now, the fol-
lowing theorem proves that the condition in (14) still holds for
Ỹd = Φ̂F̃d .

Theorem III.2: Consider a collection of measurements given
by (2) drawn from n subspace {S}nd=1 of dimensions {Qd}nd=1 .
Let Wd be the set of all full-rank submatrices of the column-
normalized data F̃d ∈ RSΔ×Qd , and Φ̂ the decomposition given
by (12) of the matrix obtained from the Algorithm 1. If the
number of shots S ≥ Qd then, the following condition holds

σ̃Qd
(Ỹd) ≥ (1− ρ)

k

√
Qd max

d �=d ′
cos(θd,d ′),

for some ρ ∈ (0, 1) with probability at least 1− 2e−ρ2 /2 , where
Ỹd = Φ̂F̃d is a full column rank matrix and k ≥ 1 is its condi-
tion number.

Proof: The proof can be found in Appendix B (see Supple-
mentary Material).

Notice that Theorem III.2 essentially establishes that the
sparse solution can be obtained from the compressed measure-
ments with high probability. In addition, note that because one
of the Φ̂ design criteria is to preserve the similarity (a.k.a, cosine
of the angle between two vectors), it is expected that θj,j ′ is also
preserved. Therefore, it is possible to infer that if the condition
in (14) holds for the spectral pixels F, it will also hold for the
compressed pixels Y with high probability.

IV. COMPRESSED SPARSE SUBSPACE CLUSTERING WITH

SPATIAL REGULARIZER

Assuming that compressed pixels of the same land-cover class
lie in one independent subspace, subspace clustering methods
can be used in order to separate them into the same group or
cluster. In particular, SSC builds the similarity matrix, which
describes the data points membership, by finding a sparse rep-
resentation for each compressed pixel whose nonzero elements
ideally correspond to points from the same subspace. Given
the designed matrix Φ and the compressive measurements
Y = ΦF, the SSC sparse representation model is formulated as
the following optimization problem:

min
Z ,R

‖Z‖1 +
λ

2
‖R‖2F

s.t. Y = YZ + R, diag(Z) = 0, ZT 1 = 1, (15)

where 1 is a one-valued vector, Z ∈ RM N×M N refers to the
representation coefficient matrix and the �1-norm regularization
in this formulation suggests that a sparse representation of a data
point finds points from the same subspace. The matrix R stands
for the representation error, and the regularization parameter λ

for the sparsity trade-off. The constraint diag(Z) = 0 is used

Fig. 6. Visual representation of the median filter step, (a) Sparse Coefficient
matrix Z, then it is reshaped as in (b) and a median filter is applied to obtain the
new values (c) and finally it is reshaped to its initial size (d).

to eliminate the trivial solution of writing a point as an affine
combination of itself and the constraint ZT 1 = 1 ensures that
it is a case of affine subspaces [4], [5].

Taking into account that neighboring pixels in a spectral im-
age usually consist of similar materials, a smoothing filter can
be applied to the sparse coefficient matrix, in order to reduce
the representation error, being able to extract more informa-
tion from the data [3]. Specifically, the smoothing filter will
reduce the noise trying to assign the same representation value
to neighboring pixels. In this work, such spatial information is
effectively incorporated into the similarity matrix by first rear-
ranging the 2D sparse coefficient matrix Z ∈ RM N×M N into a
3D cube Z ∈ RM×N×M N , treating each coefficient vector as
a “pixel” in the cube. Then, unlike previous work in [3] which
performs a 2D average filtering in each slice of the cube Z ,
we propose to perform the smooth filtering using a 3D median
filter with a 3D moving window W ∈ R3×3×3. Specifically, W
is moved through Z , on each band, pixel by pixel and replacing
each value with the median value of neighboring pixels. Fi-
nally, the filtered cube Z is rearranged back to form the matrix
Z̄ ∈ RM N×M N . Using Z̄, a regularization term ‖Z− Z̄‖2F is
incorporated in the original SSC optimization program shown
in (15). Then, the problem of finding a sparse representation co-
efficient matrix exploiting the spatial information of the scene
is formulated as the following optimization program

min
Z ,R ,Z̄

‖Z‖1 +
λ

2
‖R‖2F +

α

2
‖Z− Z̄‖2F

s.t. Y = YZ + R, diag(Z) = 0, ZT 1 = 1, (16)

where α is a regularization parameter denoting the weight of
the spatial information in the subspace clustering algorithm.
In the subsequent sections, we also refer to the optimization
problem in (16) as S-SSC. The minimization in (16) can be
efficiently solved by the alternating direction method of multi-
pliers (ADMM), which is described in detail in the Appendix C
(see Supplementary Material). The solution of (16) corresponds
to subspace-sparse representation of the data points, which is
used by spectral clustering (SC) to infer the clustering of the
data. Specifically, the clustering result is obtained by applying
SC to the Laplacian matrix induced by the similarity matrix
W ∈ RM N×M N which is defined as W = |Z|+ |Z|T [4], [5].
The complete CSI subspace clustering algorithm (CSI-SSC) is
summarized in Algorithm 2.
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Fig. 7. False-color images, ground truth images and spectral curves of each
land-cover classes for AVIRIS Indian Pines (a)–(c) and ROSIS Pavia University
(d)–(f), respectively.

Algorithm 2: Compressive Spectral Subspace Clustering.
Input: A set of CSI measurements acquired as Y = ΦF,

where the coding pattern matrix Φ is obtained with
Algorithm 1.

1: Solve the sparse optimization problem in (16).
2: Normalize the columns of Z as zj ← zj

‖zj ‖∞
3: Form a similarity graph representing the data points. Set

the weights on the edges between the nodes as
W = |Z|+ |Z|T .

4: Apply SC [31] to the similarity graph.
Output: Segmentation of the data: Y 1 , . . . ,Y �

V. EXPERIMENTAL RESULTS

The proposed compressed spectral image clustering approach
was tested on two real hyperspectral data sets, with different
imaging environments. The Indian Pines hyperspectral data
set was acquired by the AVIRIS sensor from the Northwestern
Indian Pines test site in June 1992. The spatial dimensions of this
image are 145× 145 pixels. A total of 20 water absorption and
noisy bands were removed from the original 220 bands, leaving
200 spectral features for the experiment [3]. Considering the
computational efficiency, a subimage with size 70× 70 pixels,
which includes four main land-cover classes: corn-no-till, grass,
soybeans-no-till, and soybeans-minimum-till, was used in the
experiments.

The second scene, University of Pavia, was acquired by the
Reflective Optics System Imaging Spectrometer (ROSIS) sensor
during a flight campaign over Pavia, Northern Italy. The spatial
dimensions of the image are 610× 340 pixels, with 103 bands
used in the experiments. A typical area for the test data with
a size of 140× 80 pixels, containing eight main land-cover
classes: Bitumen, asphalt, trees, bricks, bare soil, metal sheet,
meadows and shadows, was used.

Clustering of these selected images is a challenging task be-
cause the spectral signatures of the land-cover classes are very

Fig. 8. Analysis of parameter α: Change in the overall accuracy with various
values of α. (a) Indian Pines image, (b) University of Pavia image.

similar and some of the spectral curves are mixed, as observed
in Fig 7. (c) and (f). A false-color image and the ground truth
for the Indian Pines and Pavia University are also provided
in Fig. 7(a)–(b) and (d)–(e), respectively. In the experiments,
the number of clusters was set as a manual input for the sub-
space clustering algorithm. Furthermore, the parameters of the
algorithm were manually adjusted. Specifically, the regulariza-
tion parameter λ, which acts as the trade-off between the sparsity
of the coefficient matrix and the magnitude of the noise, was set
using the following formulation [5]:

λ =
β

γ
, γ = min

j
max
j �=j ′
|yT

j ′yj |, (17)

where β is the adjustment coefficient, γ is a parameter related
to the data set, which can be explicitly determined, and yj ,yj ′

are columns of Y. The regularization parameter α in (16) de-
notes the weight of the spatial information in S-SSC. In order to
analyze the sensitivity of α, experiments for each data set were
conducted. In these experiments, the coding patterns Φ were
generated using Algorithm 1 with Δ = 20 and S = 25. Fur-
ther, white Gaussian noise with a signal-to-noise ratio (SNR)
of 25 dB was added to the acquired compressed measurements,
simulating the CSI acquisition system noise.

The change in the overall accuracy of the proposed S-SSC
algorithm corresponding to different α values, with other param-
eters fixed, is shown in Fig. 8. It can be seen that the precision
changes significantly with different values of α, which suggests
that the spatial information plays a very important role in the
clustering process. For simplicity this parameter was fixed for
all experiments: α = 3.9× 104 for the Indian Pines image and
α = 25.5× 105 for the University of Pavia image. Similarly, the
parameter λ for all the experiments is calculated using (17) with
β = 1000. Since the structure of the acquired compressed mea-
surements is determined by the generated coding pattern, the
γ parameter is determined at the beginning of each experiment
using (17).

In the next experiments, the random coding patterns are
generated from a Bernoulli distribution Φ ∼ Be(p), using (3)
with p = Δ/L in order to use a similar transmittance (the
number of nonzero elements) to the designed coding patterns.
The results presented throughout the document are the average
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Fig. 9. Absolute error between the spectral signatures similarities and the
compressed measurements similarities acquired with the random and designed
coding patterns for (a) Indian Pines and (b) Pavia University datasets.

of five experiments, each with a different set of coding
patterns.1

A. Similarity Preservation

In this experiment, the performance of the proposed coding
pattern design is tested. Specifically, this experiment is intended
to show how well the similarity between two spectral signatures
is approximately preserved when the designed coding patterns
are used. For this experiment, 100 spectral pixels from each
image are randomly chosen and then are compressed using both
random and the designed coding pattern matrix Φ, generated
with parameters Δ = 20 and S = 25. Then, all the spectral
signatures and their compressed versions are normalized to have
unit �2 norm, i.e., ‖f‖2 = 1 and ‖y‖2 = 1. Using the definition
of similarity, presented in (6), the absolute error is calculated as

∣∣∣sim(fjk
, fj ′k )− sim(yjk

,yj ′k )
∣∣∣ =

∣∣∣fT
jk

fj ′k − yT
jk

yj ′k

∣∣∣ , (18)

where j, j′ ∈ {0, 1, . . . ,MN}, index a spectral signature cho-
sen at random among MN possibilities, and k = 1, . . . , 100.
Fig. 9 shows the obtained results for the two spectral images.
As observed, the absolute errors obtained with the designed cod-
ing patterns are significantly smaller than those obtained with
a random-designed matrix Φ. Therefore, the proposed coding
pattern design approximately preserves the similarities among
the spectral signatures after the scene projection.

B. Noise Analysis

It is important to note that the acquired measurements de-
scribed by (2) are noise free. However, in real CSI architectures,
the acquired compressed measurements are contaminated with
noise due to the physical limitations of the sensor. Therefore,

1A MatLab implementation of Algorithm 1 and some experiments presented
in the next sections can be found at https://git.io/vpvZS

Fig. 10. Overall clustering accuracy as a function of the aggregated noise
using the two types of coding patterns.

(2) should be rewritten as Y = ΦF + Ω, where Ω ∼ N(0, σ2)
represents the noise of the system. In order to analyze the im-
pact of noise, different experiments varying SNR are performed.
Fig. 10 presents the classification accuracy results obtained with
the designed and the random coding patterns for the two hyper-
spectral data sets. Additionally, the overall clustering accuracy
achieved when using the spectral image data cube (Full data) as
input for the optimization problem in (16) is shown as reference.
The designed patterns are generated with the fixed parameters
Δ = 20 and S = 25.

The results show that the proposed coding pattern design
outperforms the random-generated patterns even when white
Gaussian noise is added to the CSI measurements. As expected,
when SNR decreases the clustering overall accuracy is affected.
However, the accuracy curve, obtained with the proposed coding
patterns, achieves a slow decrease rate in comparison with the
random coding patterns.

C. Analysis of the Coding Pattern Design Parameters

The parameters S and Δ determine the structure of the pro-
posed coding pattern design. In order to analyze how the accu-
racy is affected by those parameters, experiments for each pair
(Δ, S) were performed varying each parameter. In this experi-
ment, the noise added to the system was fixed to 25 dB of SNR.
Fig. 11(a) and (c) present the obtained overall accuracy and
Fig. 11(b) and (d) show the variance of the obtained accuracy
for each spectral image, respectively.

Note that the number of shots S determines the ambient space
of the projected vectors. It can be shown that, when the am-
bient dimension after random projection is sufficiently large,
the distance between two subspaces almost remains unchanged
after random projection [26]. This behavior is observed in the
presented results where increasing the measurement shots leads
to better classification accuracies. In addition, notice that the
sparsity of the projection matrix Φ and the selected bandwidth
Δ are directly related. Specifically, denote the sparsity of the
matrix Φ as K = 1/κ, where κ ≈ 2L

Δ . As described in [32],
sparse random projections are robust for κ ≈ √L. However, as
κ increases (decreasing Δ), variances for sparse random pro-
jections will also increase and large errors are expected. On the
other hand, by decreasing κ (increasing Δ), the entries outside
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Fig. 11. Analysis of the coded aperture design parameters. (a) and (c) show
the overall accuracy varying the bandwidth Δ and the measurement shots S
for the hyperspectral datasets Indian Pines and Pavia University, respectively.
(b) and (d) present the variance of the obtained accuracy.

diagonal of Θ will increase leading to significant distortions in
the acquired compressed measurements. In all the other experi-
ments we fix S = 25 and Δ = 10 since, as observed in Fig. 11,
the OA and variance stabilize when S > 20 in both hyperspec-
tral datasets. Note that S = 25 yields a compression of 87.5 %
and 75.7% for Indian Pines and University of Pavia data set,
respectively.

D. Visual Maps and Quantitative Results

In order to validate the clustering performance of the pro-
posed coding pattern design, cluster maps and quantitative re-
sults are presented for the two hyperspectral scenes. In all the
experiments, the coding patterns were generated for parameters
Δ = 20 and S = 25. Further, white Gaussian noise with 25 dB
of SNR was added to the acquired compressed measurements.
The S-SSC algorithm described in section IV was used to per-
form the clustering on both compressed measurements and the
complete spectral data cube (Full-data). Additionally, the results
obtained with the original sparse subspace clustering algorithm
(SSC), when the complete spectral data cube is used as input
(Full-data-SSC), are also shown for comparison purposes. Note
that, in the experiments, we refer to “Proposed-design” as the
clustering results obtained when the S-SSC algorithm is directly
applied on the compressed measurements acquired with the pro-
posed pattern designs. Similarly, “Random-design” corresponds
to the results obtained when the S-SSC is directly applied on the
compressed measurements acquired with the random patterns.
Finally, we refer to “Full-data” when using the proposed S-SSC
method with the complete spectral image, i.e., no compression
was performed.

Fig. 12 presents the obtained visual clustering results on In-
dian Pines. The quantitative evaluations corresponding to the
accuracy for each class, overall accuracy (OA), average accu-
racy(AA) and Kappa coefficients are shown in Table I, where all
values are given in percentage. Similarly, Fig. 13 and Table II
present the visual clustering results and quantitative evaluation

Fig. 12. Visual clustering results on AVIRIS Indian Pines image: (a) Ground
truth. (b) Full-data, (c) Full-data-SSC, (d) Proposed-design and (e) Random-
design.

TABLE I
QUANTITATIVE EVALUATION OF THE DIFFERENT CLUSTERING RESULTS FOR

THE AVIRIS INDIAN PINES IMAGE

Fig. 13. Visual clustering results on ROSIS Pavia University image.
(a) Ground truth. (b) Full-data, (c) Full-data-SSC, (d) Proposed-design and
(e) Random-design.

on the Pavia University, respectively. In the tables, the opti-
mal value of each row is shown in bold and the second-best
result is underlined. From Tables I and II, it can be clearly ob-
served that the proposed clustering approach (S-SSC), using the
proposed coding patterns, provides comparable results to ap-
plying clustering directly on the full spectral data cube. Fur-
thermore, it is observed from the visual clustering maps that,
although the reconstruction is avoided, the results obtained with
the proposed coding patterns are very similar to the results ob-
tained with the Full-data-S-SSC. This behavior was expected
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TABLE II
QUANTITATIVE EVALUATION OF THE DIFFERENT CLUSTERING RESULTS WITH

THE AVIRIS PAVIA UNIVERSITY IMAGE

Fig. 14. Visual clustering results on a 64× 64 region of Pavia University.
(a) Ground truth. (b), (c) clustering results on reconstructed images using the
random and proposed coding patterns, respectively. (d), (e) clustering results
by directly using the compressed measurements acquired with the random and
proposed coding patterns respectively.

since the proposed coding patterns approximately preserve the
similarities among spectral pixels, as it was theoretically shown
in Section III-C and experimentally verified in Section V-A.

E. Clustering Time and Spectral Image Reconstruction

In this section, the effectiveness of applying clustering di-
rectly on the compressed domain is evaluated. For this purpose,
a subimage of ROSIS Pavia university dataset with the size
of 64× 64 pixels, which contains four land-cover classes: as-
phalt, meadows, trees, and bricks was used, see Fig. 14(a). CSI
measurements were acquired using the random and proposed
coding patterns. Then, 300 iterations of the gradient projection
for sparse reconstruction algorithm (GPSR) [18] were used to
reconstruct the underlying spectral scene. Fig. 14 presents the
obtained visual clustering results on the selected subimage. In
Table III, the time, quality of the reconstruction and the result of
clustering for the types of coding patterns, are shown. From this
table it is possible to observe that the proposed coding pattern
design shows a gain of up to 6 dB in terms of peak signal-to-
noise ratio (PSNR) in comparison with the random patterns.
Further, it can be seen that the designed coding pattern not only
improves the reconstruction quality but also the clustering re-

TABLE III
TIME AND CLASSIFICATION ACCURACY WHEN CLUSTERING THE

RECONSTRUCTED SPECTRAL IMAGE AND THE CSI MEASUREMENTS

sult for the two scenarios, i.e., when the subspace clustering
is applied after reconstruction and when it is applied directly
on the compressed data. Note that, the total clustering time of
the reconstructions is greater than the time of directly applying
clustering on the compressed measurements because it takes
into account the reconstruction time. In the simulations, when
using the proposed coding patterns, the total clustering time of
the reconstructed spectral image was 143.66 [s], while applying
clustering directly on the compressed measurements takes only
103.70 [s], obtaining very similar classification results.

F. Comparison With Other CSI Sensing Approaches

In this section, the proposed CSI sensing design was com-
pared with two different CSI approaches described in [9] and
[10]. In order to perform such comparison, some considerations
were taken into account. Specifically, [9] uses the measurement
matrices A ∈ RS1×L and Bk ∈ RS2×L whose elements are in-
dependently drawn at random from Gaussian, Rademacher, or
Bernoulli distribution. The measurements Ya = AF obtain S1
projections per pixel and yb,k = Bk fik

for k = 1, . . . , nv , ob-
tains S2 measurements per sample pixel nv . Because the main
goal of this paper is to apply clustering directly from compres-
sive measurements and, as explained in section II, the similarity
among two spectral pixels decrease when they are encoded (pro-
jected) differently, we only considered Ya with S1 = S in order
to apply clustering such that fair comparisons were performed.
Furthermore, Gaussian distribution was chosen, since Φ with
0, 1 entries was already considered in previous sections.

To perform a comparison with the work in [10], which as-
sumes that only a few voxels of the image are known (incomplete
hyperspectral imagery), we considered that all spectral signa-
tures had the same number of missing voxels in order to be
able to apply subspace clustering directly on the compressed
measurements. Then, two different scenarios were evaluated for
incomplete images: the first is when some voxels are randomly
removed in each spectral signature; the second is when com-
plete spectral bands are removed from the image i.e. yi = Aifi ,
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TABLE IV
COMPARISON OF CLUSTERING RESULTS FOR THE AVIRIS INDIAN PINES IMAGE

WHEN USING THE PROPOSED CSI SENSING DESIGN AND OTHER

CSI SENSING APPROACHES

TABLE V
COMPARISON OF CLUSTERING RESULTS FOR THE AVIRIS PAVIA UNIVERSITY

IMAGE WHEN USING THE PROPOSED CSI SENSING DESIGN AND OTHER CSI
SENSING APPROACHES

where Ai ∈ {0, 1}S×L and the rows of Ai are all zero except
one corresponding to the observed voxels. In the results, we
refer to these scenarios as randomly-removed-voxels (RRV) and
randomly-removed-bands (RRB), respectively.

In the experiments we used S = 25 and white Gaussian noise
with 25 dB of SNR was added to the measurements. The results
shown in Table IV and V are the average of five experiments.
All the clustering results were obtained using the proposed
subspace clustering method (S-SSC). At each experiment, dif-
ferent measurements were obtained. From Tables IV and V it
can be clearly observed that the adopted 3D-CASSI sensing
scheme, using the designed coding patterns, outperforms the
CSI compression schemes proposed in [9], [10].

VI. CONCLUSION

This work presented a coding pattern design, which aims at
preserving the spectral signatures separability as much as pos-
sible after the scene projection. This design allows to improve
clustering results on the compressive domain. Furthermore, a
subspace clustering algorithm which takes into account the spa-
tial information of the spectral images in order to correct the
representation bias and obtain a more accurate representation
coefficient matrix was also developed. The coding pattern de-
sign and the spectral image subspace clustering approach were
validated trough several experiments. The Indian pines hyper-
spectral remote sensing scene, from the AVIRIS sensor, and
the Pavia University, from the ROSIS sensor, were used in the
experiments. In general, the results show that performing the

clustering directly with the compressed measurements provides
similar accuracy results, in a lesser time, compared with those
provided by performing the clustering on the full 3D spectral
image, when a properly designed coding pattern was used. Par-
ticularly, a maximum difference of just 4% in terms of over-
all accuracy was observed when comparing the clustering re-
sults obtained by the full 3D data with those achieved using
CSI measurements acquired with the proposed coding pattern
design.
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