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The low spatial resolution of hyperspectral (HS) images generally limits the classification accuracy. Therefore,
different multiresolution data fusion techniques have been proposed in the literature. In this paper, a method
for supervised classification of spectral images from data fusion measurements is proposed. Specifically, the pro-
posed approach exploits the spatial information of an RGB image by grouping pixels with similar characteristics
into superpixels and fuses such features with the spectral information of an HS image. Simulations results
on three datasets show that the proposed classification method improves the overall accuracy and reduces
the computational complexity compared to the traditional approach that first performs the fusion followed
by the classification. © 2019 Optical Society of America

https://doi.org/10.1364/AO.58.0000B9

1. INTRODUCTION

Spectral imaging (SI) is a technique used to acquire spatial in-
formation of a scene in many contiguous electromagnetic
frequencies. The acquired image is commonly represented as a
3D data cube, where two dimensions correspond to the spatial
information and the third one to the spectral domain. Tradi-
tional sensing techniques construct such a data cube by scanning
the scene, either spectrally or spatially, in proportion to the de-
sired spatial or spectral resolution. In general, SI is a valuable
tool for remote sensing applications including precision agricul-
ture, urban planning, military surveillance, etc. [1–3].

Based on the spectral/spatial resolution, spectral range, and
width and contiguousness of bands, SI sensors can be categorized
as hyperspectral (HS) or multispectral (MS). In particular, HS
devices capture hundreds of spectral bands of the scene of in-
terest in a wavelength interval ranging from the visible region
(0.4–0.7 μm) to the infrared region (≈2.4 μm). However, despite
its high spectral resolution, HS imagery usually suffers from low
spatial resolution compared to that obtained with an MS or a
typical RGB sensor. Therefore, spectral image fusion has emerged
as a challenging processing task in the remote sensing field that
consists of the combination of a high-spectral- but low-spatial-
resolution image with a low-spectral- but high-spatial-resolution
image for obtaining a high-spatial- and high-spectral-resolution
image [4]. Based on the used theoretical approach, data fusion
algorithms can be categorized as component substitution, spectral
unmixing, sparse signal representation, and Bayesian estimation
[5–10]. Traditionally, these algorithms fuse the information ac-
quired by traditional spatio-spectral imaging sensors, resulting

in high storage and processing costs [11]. After applying a fusion
technique, the spectral signatures of the pixels (a.k.a spectral
pixels) are commonly processed to detect and classify different
materials within the enhanced spatio-spectral data cube. Parti-
cularly, spectral image classification, which aims at assigning
each spectral pixel to one class belonging to a set of categories,
has drawn broad attention and has led to a variety of methods
[12–14]. In the literature, many of the methods have con-
centrated on exploring the role of the spectral signatures in
classification, employing exclusively the spectral signatures for de-
termining the classification maps. Since spectral images can be
seen as a set of 2D images acquired at different spectral wave-
lengths, the spatial information is naturally another source of data
that can be considered to improve the classification performance.
Then, the introduction of spatial dependency offers the possibility
to boost the pixel-wise classification methods [15–18].

Among image processing methods, the superpixel technique
is well known to efficiently embed the spatial neighboring in-
formation into the classification procedure. This technique is
based on the oversegmentation strategy that partitions an image
into homogeneous subregions [19,20]. Such subregions are
usually irregular spatial units, but perceptually consistent,
i.e., all pixel values in a superpixel area are most likely uniform,
meaning that superpixel methods are adapted to real scenes
[21]. Therefore, combining superpixel partitioning with con-
ventional spectral classification approaches is expected to boost
the classification performance, considering not only the spectral
behavior of the spectral signatures but the variations of spatial
characteristics of the scene of interest.
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In this paper, a supervised spatial-spectral classification
approach of high-spectral- and high-spatial-resolution fused
images is developed, where the superpixel segmentation tech-
nique is used to incorporate the spatial information in the fused
data. Specifically, we first apply a superpixel algorithm to the
rich spatial resolution RGB image in order to group spatial
neighboring pixels, with similar characteristics, in segments
or superpixels. Then, an optimization problem is formulated
to fuse the high spectral information of an HS image with
the spatial information given by the superpixels of the MS im-
age. Finally, the pixels of the fused data cube are classified using
a supervised classification algorithm. The main contribution of
this paper is a methodology that fuses and, simultaneously,
incorporates spatial information of the scene for boosting
the classification accuracy. This approach, in turn, provides a
framework for low computational complexity and accurate
classification.

The paper is organized as follows: in Section 2, the matrix
model and some notation used through the paper are intro-
duced. The mathematical description and flow chart of the pro-
posed classification methodology is described in Section 3. In
order to evaluate the performance of the proposed method,
several simulation results are presented in Section 4 with differ-
ent spectral image datasets. Some concluding remarks are
summarized in Section 5.

2. MATRIX MODEL

In general, we denote F as the spatio-spectral data cube, with
M × N spatial dimensions, L spectral bands, and entries
denoted as F n1, n2, k, where n1 and n2 index the spatial coordi-
nates, and k determines the k-th spectral band. The data cube
can be rearranged as a matrix F ∈ RMN×L whose rows ffTj gMN

j�0
are the spectral signatures of the data cube. Specifically, the rear-
rangement can be expressed as

F � ��F 0,0,0,F 1,0,0,…,F 0,1,0,…,F �M−1�,�N−1�,0�T ,
…, �F 0,0,�L−1�,…,F �M−1�,�N−1�,�L−1��T �: (1)

In this work, the classification maps of a high-spatial- and high-
spectral-resolution image F are found from a fused image ob-
tained from an RGB and an HS image, denoted as Fm ∈
RMN×3 and Fh ∈ RMhNh×L, respectively. Note that Fm can
be composed by combining three spectral bands representing

the red, green, and blue colors. Further, Fh can be seen as a
blurred and spatially downsampled instance of F with Nh �
N∕p and Mh � M∕p, where p is the downsampling factor
along the spatial coordinates. Mathematically, the matrices
Fm and Fh can be expressed as

Fm � FDm, (2)

Fh � DhF, (3)

where Dm ∈ RL×3 is a sparse selection matrix with only three
nonzero values, i.e., a single one per column that indicates the
selected spectral bands composing the RGB image and Dh ∈
RMhNh×MN is a spatial downsampling that includes both the
blur operation and the spatial decimation of F with downsam-
pling factor p.

3. PROPOSED SPATIO-SPECTRAL
CLASSIFICATION APPROACH

The aim of the proposed method is to incorporate the spatial
information of the spectral scene in the classification features
using an RGB image as side information. The flow chart of
the algorithm is depicted in Fig. 1. In general, a rich spatial
and spectral fused cube F ∈ RMmNm×Lh is obtained using the
spectral information of an HS image and the superpixels ex-
tracted from the RGB image. Then, the fused cube is later used
as the input for a supervised pixel-based classifier.

A. Superpixel Segmentation
In Fig. 1, the first step in the proposed methodology is to seg-
ment an RGB image in superpixels. The superpixels technique
is based on the oversegmentation strategy that gathers a group
of uniform pixels into homogeneous subregions. In this work,
we use the simple linear iterative clustering (SLIC) superpixel
algorithm [22,23]. SLIC works in the 5D space, where two
coordinate components (x, y) depict the spatial location of
the segment and the other three components corresponds to
the RGB color channels. Given N seg desired equally sized
superpixels, where the approximation size of each superpixel
is N 2∕N seg, the first step of SLIC is to define a cluster center

at every grid interval S �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2∕N seg

q
� N∕

ffiffiffiffiffiffiffiffiffi
N seg

p
. The algo-

rithm assumes that the pixels associated with a cluster lie in a
2S × 2S area around the superpixel center on the �x, y� plane.
Therefore, this becomes the search area for the pixels near to
each cluster center. To avoid keeping the center on the edge of

RGB HSISuperpixel
extraction Fused cube Classification

Proposed method of fusing
superpixels with HSI

Fig. 1. Flow chart of the proposed classification framework. An RGB image is segmented into a predefined number of superpixels. The superpixel
image and the HS image are used to obtain a high spectral and spatial resolution, which are used as classification features. Finally, a supervised
classification algorithm is applied on the fused image.
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an object, it is transferred to the lowest gradient position in a
3 × 3 neighborhood. In the next step, for each cluster center,
SLIC assigns the best-matching pixels from the search area
according to the distance measure,

Dc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Rj − Rj 0 �2 � �Gj − Gj 0 �2 � �Bj − Bj 0 �2

q
, (4)

Dp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xj − xj 0 �2 � �yj − yj 0 �2

q
, (5)

Dt � Dc �
m
S
Dp, (6)

where Rj,Gj,Bj corresponds to the color of the j-th pixel, and
m controls the compactness of a superpixel, which is usually
chosen as m � 10. The complexity of SLIC algorithm is
O�MN �, since it needs to compute distances from any point
to no more than eight cluster centers and the number of iter-
ations is constant [23]. Notice that the region grows at most 2
times the cluster radius with the SLIC algorithm.

Once the segmentation map of the RGB image has been
created using SLIC, the next step in the proposed method is
to create the upsampling matrix U ∈ RN seg×MN , which collects
the superpixel information. First, denote pe as the vector of size
ne containing the indices of all pixels belonging to the super-
pixel e. Then, the nonzero values of the e-th row of U, denoted
in vector form as �ue�T , are determined by the entries of pe and
the value of ne as follows:

�ue�T�pe�l �
1

ne
, for l � 0,…, ne , (7)

where �ue�T�pe�l denotes the position in ue indexed by the l -th
entry of the pe vector.

B. Problem Formulation
The following step in the proposed method is to perform the
fusion operation Fh spectral information and the superpixels
extracted from the RGB image Fm. Using the notation given
in Section 2, the proposed fusion operation is formulated as the
optimization problem,

min
F

1

2
∥Fh −DhF∥2F � λ∥F∥�, (8)

where ∥·∥F stands for the Frobenius norm and λ is a regulari-
zation parameter. Since pixels in F that belongs to the same class
share a common low-rank pattern, the nuclear norm minimi-
zation ∥F∥�, in Eq. (8), is used to obtain the lowest rank rep-
resentation that captures the global structure of the data [24].

As the matrix F is obtained from the superpixel information,
it is possible to relate the U matrix with F as

F � UTF, (9)

where F ∈ RN seg×L contains the fused spectral information of
each superpixel. Then, assuming that rank�F� ≈ rank�F�,
the optimization problem in Eq. (8) can be rewritten as

min
F

1

2
∥Fh −DhUTF∥2F � λ∥F∥�: (10)

1. ADMM Algorithm to Solve the Proposed Optimization
Problem
Theminimization in Eq. (10) can be efficiently solved by the well-
known alternating direction method of multipliers (ADMM).
First, an auxiliary matrix Z with the same size of F is used to
separate the problem. In this way, problem in Eq. (10) becomes

min
F,Z

1

2
∥Fh −DhUTF∥2F � λ∥Z∥�

s:t: Z � F: (11)

The augmented Lagrangian associated with the optimization in
Eq. (11) can be written as

L�F,Z,G� � 1

2
∥Fh −DhUT F∥2F � λ∥Z∥�

� ρ

2
∥F − Z � G∥2F , (12)

where G is the scaled dual variable and ρ > 0 is the weighting of
the augmented Lagrangian term [25]. The ADMM solution of
Eq. (11) is summarized in Algorithm 1 that consists of minimiz-
ing F,Z, andG, alternatively. Specifically, the minimization of the
three matrices consists of the following updates:

1) Updating F: F�t� is obtained by minimizing L with re-
spect to F, while (Z, G) are fixed. We calculate the derivative of
L with respect to F, and set it to zero to obtain F as follows:

F�t� � UTDT
h Fh � ρI�Z − G�

ρI�UTDT
h DhU

: (13)

2) Updating Z: the update of Z is given by the singular
value thresholding operator [26]. Specifically, we compute
the SVD of the symmetric matrix,

F� G � ÛΣÛ�, (14)

and apply the soft-thresholding operator to the resulting
singular values,

S1∕ρ�Σ� � diagf�σi − 1∕ρ��g, (15)

where �a��≔maxfa, 0g. Then, the update of Z is defined as

Z�t� � ÛS1∕ρ�Σ�Û�: (16)

After obtaining the estimation of F, the rich spatio-spectral
image can be obtained using Eq. (9).

Algorithm 1. ADMM Subiterations to Estimate F

Input: Fh, λ, ρ,Dh,U MAXITER.
Initialization:

1: Z�0� � 0, G0 � 0
Main iterations

2: for t � 1 to MAXITER do
3: F�t� ← arg minFL�F,Z�t−1�,G�t−1��
4: Z�t� ← arg minZL�F�t�,Z,G�t−1��
5: G�t� ← G�t−1� � F − Z
6: end for

C. SUPERVISED CLASSIFICATION

Given the spectral superpixels F and the respective high-
spectral- and high-spatial-resolution image F, obtained with
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Eq. (9), the multiclass supervised classification method aims at
determining the class label that better fits the corresponding
js-th pixel, for js � 0,…,N seg − 1. Notice that with the pro-
posed method, it is only necessary to determine the class label
of the N seg spectral superpixels (rows of F ). Then, the pixels in
F acquire the same label of the superpixel, to which they be-
long. As the number of superpixels N seg ≪ MN , the proposed
approach boosts the computational performance, as the next
section shows. In this paper, the classification of the spectral
scene is achieved using two well-known algorithms: the support
vector machine (SVM) and the k-nearest neighbor (KNN).
In addition, we denote Ω � fω1,…,ωcg as the set of c class
labels and Θ � fθ1,…, θvg as the set of v integers indexing the
training samples.

1. SVM
Let us first consider the binary supervised classification prob-
lem, where each feature vector of the training set is associated
with a binary output βθ ∈ f−1, 1g for Θ � fθ1,…, θvg. In this
context, the SVM focuses on determining a hyperplane that
optimally separates the samples belonging to different classes.
This problem is equivalent to minimizing the norm of a weight
vector h that is normal to the decision hyperplane [27,28].
Specifically, this classification method solves the following
optimization problem:

min
h, h0,XΘ

�
1

2
∥h∥2

2
� η

X
Θ
XΘ

�

s:t: βΘ�γ�fTΘ�Th� h0� ≥ 1 − XΘ

XΘ ≥ 0, (17)

for all Θ � fθ1,…, θvg, where fTΘ are the Θ rows of F used as
training data, XΘ is the set of slack variables that considers the
nonseparability between sets belonging to different classes, η is
the regularization parameter that controls the influence of
the misclassified samples, γ is a nonlinear function that maps
the feature vector to the kernel space, and h0 is the offset of the
decision hyperplane with respect to the origin of the coordinate
system [29].

As mentioned before, SVMs are basically binary classifiers.
However, a multiclass strategy for the spectral image classification
is required. To overcome this drawback, the one-against-one
multiclass strategy is adopted, where two classes are separately
analyzed by implementing a binary classifier, ignoring, at the
same time, the remaining classes [30]. Finally, using the training
sample set ffTΘgθvΘ�θ1

, the problem of classifying each test pixel
consists of finding the class Ω whose training pixel Θ is the
nearest to the test pixel in the Euclidean distance,

Class�fTjs � � min
Ω�Ω1,…,Ωc

∥fTjs − �fTΘ��Ω�∥22, (18)

where fTjs is the js-th row of F and �fTΘ��Ω� denotes the training
pixels (rows of F ) belonging to the class Ω. Notice that the SVM
training is performed using the rows of F as training data, and the
classification is performed on the superpixels (rows of F ).

2. KNN
Following the same previous introduced notation, denote N js

as the set containing the kn nearest neighbors of the js pixel f
T
js

with labels denoted as fl1,l2,…,lkng. Then, the KNN
classifier finds the kn nearest neighbors of the fTjs point in the
training data and assigns such testing point to the most fre-
quently occurring class of its kn neighbors. The KNN performs
the classification with the following majority voting rule:

Class�fTjs � � arg max
Ω�Ω1,…,Ωc

Xkn
i�1

δ�li,Ω�, (19)

where δ�·, ·� is the Kronecker delta function, which is equal to 1
if all its arguments are equal, and 0 otherwise.

4. SIMULATIONS AND RESULTS

In this section, the performance of the proposed spectral image
classification method is evaluated. In particular, we test the clas-
sification framework on three datasets, the Pavia University,
the Pavia Center, and the Salinas Valley. The results are com-
pared against other approaches that fuse high-spatial- and high-
spectral-resolution images, followed by the classification. Pavia
University is an image acquired over an urban area surrounding
the University of Pavia, northern Italy, by the Reflective Optics
System Imaging Spectrometer (ROSIS-03) airborne sensor. The
size of the dataset is 610 × 340 pixels and 103 spectral bands,
with a high spatial resolution of 1.3 meters per pixel and a spec-
tral coverage ranging from 0.43 to 0.84 μm. Figures 2(a)–2(c)
show the color composite of Pavia University; the corresponding
ground truth image, which differentiates nine land-cover classes:
asphalt, meadows, gravel, trees, metal sheets, bare soil, bitumen,
bricks, and shadows; and the characteristic spectral signatures
of each class, respectively. Pavia Center is an image also ac-
quired with the ROSIS-03 sensor with size of 1096 × 715 pixels
and 102 spectral bands, and it retains the same spatial and
spectral resolution characteristics as the Pavia University dataset.
The ground truth of Pavia Center contains nine classes: water,
trees, asphalt, self-blocking bricks, bitumen, tiles, shadows,
meadows, and bare soil. A false-color images of the Pavia
Center, the ground truth, and its spectral signatures are shown
in Figs. 2(d)–2(f). The third spectral dataset with which the
proposed method was tested is the Salinas image. This scene
was collected in 1998 by the airborne visible/infrared imaging
spectrometer (AVIRIS) on Salinas Valley, California, USA. The
size of the dataset is 512 × 217 pixels and 204 spectral bands in
the range of 0.24 to 2.40 μm. The Salinas ground truth contains
16 land-cover classes: broccoli green weeds 1, broccoli green
weeds 2, fallow, fallow rough plow, fallow smooth, stubble,
celery, grapes untrained, soil vineyard develop, corn senesced
green weeds, lettuce romaine 4 wk, lettuce romaine 5 wk, lettuce
romaine 6 wk, lettuce romaine 7 wk, vineyard untrained, and
vineyard vertical trellis. Figures 2(g)–2(i) shows a false-color
image of Salinas Valley, its ground truth, and the spectral signa-
tures of each class, respectively.

Following the matrix model described in Section 2, the HS
images (Fh) are obtained with a decimation ratio across the spatial
coordinates of p � 4. Therefore, the Pavia University image was
resized to a high-resolution spectral image of 152 × 85 × 103;
the Pavia Center image was spatially reduced to 274 × 178 pixels
and 102 spectral bands; and the Salinas Valley image to
128 × 54 × 204. On the other hand, with a selection matrix
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applied to the original datasets, a high-resolution spatial RGB
(Fm) image of each dataset was obtained. The size of the Fm im-
ages for Pavia University, Pavia Center, and Salinas are
610 × 340 × 3, 1096 × 715 × 3, and 512 × 217 × 3, respectively.

The experiments described below were performed by ran-
domly selecting 5% of the labeled referenced data as training
samples. Note that, in the presented results, we refer to “full-
data” when classifying the complete high spatial and spectral
image, i.e., no fusion was performed. The aim of adding the
full-data results is to evidence the impact of incorporating spa-
tial information in the classification performance. In addition,

we compare the proposed approach with performing the fusion
procedure with two state-of-the-art algorithms, before classify-
ing the obtained high spatio-spectral pixels. Specifically, “GSA”
refers to the results achieved classifying a high-spectral- and
high-spatial-resolution image obtained using the state-of-the-
art fusion method GS adaptive (GSA) algorithm [31].
Similarly, “MAP-SMM” corresponds to the results achieved
classifying a high-spectral- and high-spatial-resolution image re-
constructed with the MAP-SMM algorithm [32]. In all the
simulations, the datasets were classified with the SVM and
KNN algorithms.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. False-color images, ground truth maps, and spectral signatures of each land-cover class for (a)–(c) Pavia University, (d)–(f ) Pavia Center,
and (g)–(i) Salinas Valley, respectively.
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A. Impact of the Number of Superpixels and Training
Samples in the Classification Accuracy
In the first experiment, the number of superpixels to cluster the
image was varied to analyze the impact in the overall accuracy
(OA). In order to identify an adequate number of segments that
provides the highest classification accuracy for each dataset, the
value of N seg was varied from 100 to 4000 in steps of 100.
Figure 3 shows the overall accuracy results of the proposed
method with both classifiers, SVM and KNN, by varying
the number of segments N seg in each dataset.

Figure 3(a) presents the obtained results for the Pavia Univer-
sity. Note that, as the number of desired segments (N seg) in-
creases, the overall accuracy increases exponentially until reaching
N seg � 1600, where the OA begins to decrease slowly, as de-
picted with the red and blue lines. Furthermore, note that the
proposed method with KNN outperforms the results obtained by
classifying the full-data and data obtained by the GSA and MAP-
SMM fusion methods when N seg ≥ 700 and N seg ≤ 2800.

The obtained results for Pavia Center are shown in Fig. 3(b).
As observed, when the number of superpixels increases, the

performance of the classification improves exponentially, until
N seg ≈ 3400 where the overall accuracy begins to tend to
≈99.61%. As observed, in this particular image, all the meth-
ods perform well; however, with an adequate selected number
of segments, the proposed method with KNN outperforms
the others.

Figure 3(c) shows the results obtained for the Salinas image.
In this experiment, using the KNN classifier, the classification
accuracy increases exponentially when the number of superpix-
els increases. However, when N seg � 900, the OA begins to
decrease. In this experiment, it is also important to note that
the performance of the KNN classifier was significantly better
than SVM. In addition, the results obtained with the proposed
method and the KNN classifier outperform all the other meth-
ods when N seg ≥ 300.

In the second experiment, the number of samples used in the
training stage was varied to analyze the impact in the OA. As
observed in Fig. 4, all results obtained from the KNN classifier
provide low-accuracy classification results in comparison with
SVM, except for the proposed method, which exhibits good

Fig. 3. Overall accuracy of classification varying the number of segments (N seg) in the proposed method when classifying (a) Pavia University,
(b) Pavia Center, and (c) Salinas Valley. The obtained OA when using the full-data, and the GSA and the MAP-SSM fusion methods are provided
for comparison purposes.

Fig. 4. Overall accuracy of classification varying the number of training samples in the proposed method when classifying (a) Pavia University,
(b) Pavia Center, and (c) Salinas Valley. The obtained OA when using the full-data, and the GSA and the MAP-SSM fusion methods are provided
for comparison purposes.
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performance for the tested number of training samples. This is
expected since the KNN classifier takes more advantage of the
spatial contextual information given by superpixels.

In general, for the proposed method with KNN, increasing
the number of training samples will also improve the overall
accuracy. However, when the number of training samples is
greater than 8, the overall accuracy does not vary notably. In
addition, from Fig. 4(a), it can be noted that, for 1% of training
samples, the proposed method with both KNN and SVM clas-
sifiers provides the same results as those given by GSA-SVM.

B. Classification Maps and Quantitative Results
To further validate the performance of the proposed frame-
work, classification maps and quantitative results from full-data,
GSA, MAP-SMM, and the proposed approach are presented
in Figs. 5–7 and Tables 1–3. In particular, Table 1 shows the
numerical results for each in the nine land-cover classes in
Pavia University. The presented results of average accuracy (AA),
OA, the Kappa coefficient, and the running time are the average
of 25 realizations of each experiment. In the table, the optimal
values are shown in bold font, and the second-best results are
underlined. All the numerical results, except the Kappa coeffi-
cients and the running time, are given in percentage.

From Fig. 5 and Table 1, it can be clearly seen that the pro-
posed classification approach provides the best accuracy results
in comparison with classifying the pixels of the full and the
fused spectral data cubes. The OA values for the different clas-
sification approaches are shown in each subfigure of Fig. 5.
For this dataset, the best accuracy classification results are pro-
vided by the proposed framework using the KNN classifier.

In addition, using the proposed method with the KNN clas-
sifier provides the best classification time, as noticed in Table 1.
All execution times shown in this paper include the time of the
fusion stage.

Figure 6 and Table 2 show the visual and numerical results
of the Pavia Center dataset. Notice that when the KNN clas-
sifier is used with the proposed approach, the best overall ac-
curacy and Kappa coefficient are obtained. In addition, this
method takes the shortest execution time. On the other hand,
note that although when using the SVM classifier with the pro-
posed method the classification results are lower than using
KNN, these are the second-best results in terms of overall
accuracy, Kappa, and time.

The performance of the classification of the Salinas Valley
dataset is shown in Fig. 7, and the quantitative results are
presented in Table 3. This spectral image exhibits the greatest
increment in classification performance when using the pro-
posed method, compared to the other approaches. By applying
the classifier directly on the original full data, OA classification
results of 91.29% and 89.47% were obtained, in 33.424 and
17.903 s, respectively, whereas the proposed method using
the KNN classifier achieves an OA of 99.21% in 1.414 s.
In addition, note that the second-best classification results are
obtained using the GSA fusion approach and the SVM classi-
fier. However, the second-best classification time was obtained
by the proposed method and the SVM classifier. It is important
to note that the good classification results obtained by the GSA
and the MAP-SMM are greatly due to the denoising process
performed in those methods.

Fig. 5. Visual classification results on Pavia University image. Figure shows the ground truth and the results for full-data, GSA, MAP-SMM, and
the proposed approach using both SVM and KNN classifiers.
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Fig. 7. Visual classification results on Salinas Valley image. Figure shows the ground truth and the results for full-data, GSA, MAP-SMM, and the
proposed approach using both SVM and KNN classifiers.

Fig. 6. Visual classification results on Pavia Center image. Figure shows the ground truth and the results for full-data, GSA, MAP-SMM, and the
proposed approach using both SVM and KNN classifiers.
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Table 1. Quantitative Results of the Different Classification Methods for the Pavia University Image

Class

FULL GSA MAP-SMM PROPOSED

SVM KNN SVM KNN SVM KNN SVM KNN

Asphalt 86.41 76.48 97.04 81.00 94.94 82.40 96.10 96.28
Meadows 95.75 94.74 98.89 95.47 97.79 94.28 99.04 99.60
Gravel 69.18 62.34 87.34 66.72 82.93 70.83 90.40 96.61
Trees 91.51 83.74 94.07 85.96 91.91 74.66 74.39 77.81
Metal sheets 99.40 99.43 99.87 99.92 99.00 98.90 99.16 99.27
Bare soil 61.19 55.81 87.59 70.90 82.13 66.00 92.46 99.44
Bitumen 72.41 79.02 94.73 76.27 95.08 80.56 98.70 98.06
Bricks 76.53 77.89 93.03 76.58 91.60 79.32 93.34 93.39
Shadows 95.81 94.91 97.56 98.89 95.73 94.02 95.80 96.60
AA 83.13 80.48 94.46 83.52 92.34 82.33 93.27 95.23
OA 86.24 83.01 95.69 86.11 93.68 84.85 95.00 96.66
Kappa 0.8164 0.7731 0.9429 0.8158 0.9162 0.7985 0.9337 0.9559
Time 16.7052 23.9618 16.5859 25.1008 27.0535 38.1522 10.8399 6.8039

Table 2. Quantitative Results of the Different Classification Methods for the Pavia Center Image

Class

FULL GSA MAP-SMM PROPOSED

SVM KNN SVM KNN SVM KNN SVM KNN

Water 99.97 99.97 99.98 99.99 99.98 99.98 99.96 100
Trees 93.75 89.98 97.54 94.25 95.15 93.41 97.27 98.56
Meadows 86.27 87.58 95.95 92.02 87.16 87.27 93.07 97.37
Bricks 77.20 74.01 92.45 89.97 91.01 82.88 99.48 97.55
Bare soil 95.94 94.87 97.23 97.50 97.34 92.92 99.38 98.85
Asphalt 91.69 86.24 97.40 94.34 95.39 90.30 97.13 99.29
Bitumen 92.54 90.46 97.59 93.89 87.43 92.02 99.07 98.56
Tile 99.63 99.15 99.67 99.85 99.58 99.20 99.57 99.93
Shadows 96.70 94.32 98.32 99.55 90.97 98.29 90.68 99.10
AA 92.63 90.73 97.35 95.71 93.78 92.92 97.29 98.80
OA 97.74 96.84 99.11 98.54 98.00 97.51 99.13 99.62
Kappa 0.9680 0.9552 0.9874 0.9794 0.9716 0.9647 0.9877 0.9946
Time 35.5553 180.1488 54.4082 359.6640 58.2847 353.3343 10.9937 7.3261

Table 3. Quantitative Results of the Different Classification Methods for the Salinas Valley Image

Class

FULL GSA MAP-SMM PROPOSED

SVM KNN SVM KNN SVM KNN SVM KNN

Broccoli-green-1 98.83 99.00 99.48 98.13 99.47 99.74 100 99.86
Broccoli-green-2 99.23 99.10 99.91 99.78 99.33 99.12 99.80 99.60
Fallow 99.24 97.07 99.76 95.07 99.91 93.85 99.78 99.78
Fallow-rough-plow 98.86 99.52 98.09 98.39 98.58 98.87 99.65 99.57
Fallow-smooth 99.35 96.59 98.98 95.63 98.19 93.10 98.90 98.95
Stubble 99.83 99.70 99.99 99.86 99.86 99.50 99.92 99.79
Celery 99.47 99.41 99.48 98.96 99.08 98.61 99.75 99.60
Grapes-untrained 83.21 76.73 92.60 77.52 90.71 73.89 91.51 99.72
Soil-vineyard-develop 99.50 98.77 99.99 99.46 99.82 98.96 99.94 99.80
Corn-senesced-green-weeds 96.29 93.34 98.32 91.73 97.71 90.53 98.28 98.67
Lettuce-romaine-4wk 97.80 98.25 97.88 89.79 97.45 88.56 97.95 98.93
Lettuce-romaine-5wk 99.83 99.65 99.97 98.42 99.90 98.65 98.72 99.49
Lettuce-romaine-6wk 98.01 97.74 98.67 97.93 97.38 96.59 96.56 92.35
Lettuce-romaine-7wk 96.63 94.51 98.90 94.92 96.80 93.27 95.63 90.88
Vineyard-untrained 66.45 67.07 78.71 66.90 76.90 65.61 78.98 99.28
Vineyard-vertical-trellis 98.76 97.63 97.90 96.38 98.86 95.99 99.02 98.88
AA 95.71 94.63 97.42 93.68 96.87 92.80 97.15 98.45
OA 91.29 89.47 95.17 89.20 94.34 87.86 94.93 99.21
Kappa 0.9030 0.8828 0.9462 0.8797 0.9369 0.8649 0.9435 0.9912
Time 33.4255 17.9035 34.4387 18.8947 35.4682 18.4208 5.4616 1.4140
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5. CONCLUSION

A supervised classification approach from remote-sensing fused
images has been developed. This approach fuses the spatial in-
formation of an RGB image, extracted using superpixels, with
the spectral information of an HS image. This fusion procedure
is effectively formulated as an optimization problem, which was
solved using ADMM. The classification, using a supervised
method, of the fused image boosts the classification perfor-
mance, and therefore, it reduces the number of pixels that need
to be classified, since the image is grouped in superpixels.
Therefore, the overall classification time decreases in compari-
son with other tested approaches. In all performed experiments,
it can be noticed that adding spatial contextual information via
superpixel segmentation significantly improves the classifica-
tion results. Although the classification from the fused images,
obtained with GSA and MAP-SMMmethods, is good, the clas-
sification time is significantly greater than using the proposed
method. In general, the framework developed in this paper pro-
vides a faster method to directly fuse and classify HS images
instead of first reconstructing the high-spatial- and high-
spectral-resolution image and then performing classification.
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