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ABSTRACT

Compressive spectral imaging (CSI) acquires coded projec-
tions of a spectral scene reducing storage costs. The single-
pixel camera architecture (SPC) excels among several CSI
devices due to its low implementation cost. Traditionally,
before applying any post-processing task, e.g., clustering, it
is required to solve a computationally expensive optimization
problem to reconstruct the 3D information. Instead, this paper
proposes a hierarchical approach to design the sensing matrix
of the SPC, such that the pixel clustering task can be per-
formed directly using the compressed infrared SPC measure-
ments without a previous reconstruction step. Specifically, a
sensing matrix is designed to extract features directly from
the compressed measurements at each hierarchy step. Then,
a final segmentation map is obtained through majority voting
in the partial clustering results. Through simulations and ex-
perimental proof-of-concept implementation, we demonstrate
the efficient proposed alternative to estimate clustering maps
without relying on oversampling sensing protocols.

Index Terms— Compressive Spectral Imaging, Subspace
Clustering, Infrared, Single-pixel Camera.

1. INTRODUCTION

Spectral imaging (SI) acquires two-dimensional spatial infor-
mation of a scene across a range of spectral wavelengths.
Compared to traditional RGB imaging systems, SI provides
more detailed information about the pixels in the scene to
spectral level, which allows the identification of several target
features [1]. In this sense, SI has emerged as a valuable tool
for multiple applications, including remote sensing classifica-
tion, where the goal is to assign a class or label to each pixel
of an image [2]. This classification task can be performed by a
supervised or unsupervised approach. Supervised approaches
require labeled data for a costly training stage to learn the
classes’ characteristics; in contrast, unsupervised methods as-
sign the classes by discovering hidden patterns in grouping
similar pixels. In particular, spectral clustering is an unsu-
pervised technique that has been successfully employed in
SI classification when the labeled samples are unavailable or
difficult to acquire [3, 4, 5]. On the other hand, the classifi-
cation task usually improves as the number of spectral bands
increases [6]. However, this requires sensing more informa-

tion, which makes spectral data acquisition and processing
challenging under traditional scanning-based methods.

Recently, compressive spectral imaging (CSI) has emerged
as a SI approach that acquires compressed projections of the
whole data cube instead of directly measuring all the voxels
[7, 8]. CSI allows to detect and reduce the dimensionality
of the scene in a single step. Consequently, the cost of sens-
ing, storage, transmission, and processing spectral images
using CSI devices is significantly reduced [9]. Optimiza-
tion algorithms that solve the underlying ill-posed problem
have been employed to recover the spectral image from the
compressed measurements. For instance, the fast iterative
shrinkage-thresholding algorithm (FISTA) [10], the gradi-
ent projection for sparse representation (GPSR) [11], or the
orthogonal matching pursuit (OMP) [12] are state-of-the-art
recovery algorithms. Although these optimization algorithms
provide good performance, they are computationally expen-
sive and time-consuming. Several works in CSI have focused
on designing coding patterns to improve the results of the
reconstruction, using side information from a second sensor
[13, 14]. However, traditionally the scenes are acquired inside
the visible spectrum range, i.e., beginning at 400 nm.

This paper develops an image detection protocol to obtain
unsupervised pixel classification directly from the compres-
sive infrared single-pixel camera (SPC) domain (0.9-2.5 um).
A hierarchical approach is introduced to design the down-
sampling matrices preserving the cluster features in a reduced
set of compressed measurements. Specifically, the downsam-
pling matrices are generated following a regular size pixels
decimation approach, where the pixel size proportionally de-
creases in function of the hierarchical step. Note that, for each
hierarchical iteration, our method estimates a clustering map.
Then, we use a majority voting technique among all the esti-
mated maps to build the final segmentation map.

Contribution. In this work, we propose a hierarchical ap-
proach to design a sensing matrix of the SPC [15] such that
clustering features are extracted directly from the acquired
compressed measurements. Specifically, at each level of the
hierarchy, we design the sensing matrix as the product of a
Hadamard and decimation matrices. Our design allows ob-
taining a set of features directly from the compressed mea-
surements exploiting the properties of the Hadamard matrix.

In the proposed approach, the decimation matrix at a
given level is designed to group more similar spatial features



than the previous level. Therefore, the composite sensing
matrix has more sampling vectors and it is intended to pro-
vide more features than those obtained in the previous level.
Lastly, the final segmentation map is obtained by perform-
ing majority voting on the partial clustering results obtained
using the set of features of each hierarchy level.

2. CSI ACQUISITION SYSTEM

In this paper, the proposed CSI clustering approach is per-
formed on the SPC compressed measurements. The objective
lens focuses the input 3D scene F , with L spectral bands and
M × N spatial pixels, onto the coded aperture T ∈ RM×N ,
that spatially modulates each spectral pixel. The coded aper-
ture T can be modeled as a binary pattern {−1, 1}, that blocks
the light or lets it pass through each pixel.

2.1. Discrete Sensing Model

Mathematically, the discrete sensing process can be expressed
as

Y = HF̂+ ϵ, (1)

where Y ∈ RK×L is the compressed measurements ac-
quired in K shots, H ∈ RK×MN is the coded aperture with
H ∈ {1, 0,−1}, F̂ ∈ RMN×L is the matrix form of the
3D datacube F ∈ RM×N×L, and ϵ ∈ RK×L represents the
additive noise. In order to capture K measurement shots, a
different coded aperture pattern is employed each time. The
compression ratio in this model is given by γ = K

MN , where
γ ∈ [0, 1].

2.2. Sensing Matrix Design

In general, it is required to solve a computationally expen-
sive optimization problem to recover the underlying spectral
scene from the compressed measurements acquired in Eq. 1.
Taking into account the structure of Hadamard matrices, [16]
proposes to design the sensing matrix for each band H as

H = W∆, (2)

where W ∈ {−1, 1}K×K is a Hadamard matrix, and ∆ ∈
RK×MN is a decimation matrix.

Recently, a fast spectral image recovery method was intro-
duced in [17], where authors proposed to design ∆ by obtain-
ing superpixels from an RGB image which was acquired as
side information. Specifically, the method named FMR [18]
takes advantages of the fact that the inverse of a Hadamard
matrix is its transposes and perform a fast low-resolution re-
construction for each spectral band as

f̃l = (1/K)∆TWTyl = (1/K)∆TWTW∆f l ≈ fl. (3)

Note that, instead of performing the complete reconstruction,
it is possible to directly extract features from the compressed
measurements. In particular, features from the l-th band can
be obtained as

f̄l = WTyl = ∆f l, (4)

where f̄l contains the average spectral information of pixels
grouped in segments given by the structure of the downsam-
pling matrix ∆. It is important to note that, similar as in [17],
in the following sections we assume that K = Nseg .

3. PROPOSED CSI CLUSTERING

Taking into account the sensing matrix construction approach
presented in Eq. 2, it is possible to design the downsampling
matrix ∆ to efficiently extract clustering features from the
compressed measurements. In this section, we present an un-
supervised approach to perform both, ∆ matrix design and
clustering of the spectral image pixels by directly using the
compressed measurements. The complete workflow of the
proposed approach is depicted in Fig. 1.

3.1. Downsampling Matrix Design

In general, the matrix ∆ ∈ RNseg×MN groups the M × N
spectral pixels in Nseg segments, such that each component
of the vector f̄l = ∆f l contains the average spectral informa-
tion of pixels grouped in one segment. More formally, denote
pe as the vector of size ne containing the indices of all pixels
belonging to the e-th segment. Then, the nonzero values of
the e− th row of ∆, denoted in vector form as (δe)T , are de-
termined by the entries of pe and the value of ne as follows:

(δe)
T
(pe)j =

1

ne
, for j = 1, · · · , ne, (5)

where (δe)
T
(pe)j

denotes the position in δe indexed by the
j − th entry of the vector pe.

The main idea of the proposed design of ∆ is to group
pixels such that similar spectral information is taken into ac-
count. As only the compressed measurements are available
and we do not have information from VIS spectrum (we are
only interested in NIR), we propose to design ∆ in an iter-
ative hierarchical fashion such that Nseg increases (fewer
pixels are grouped in one square (regular) segment) in each
iteration.

At each iteration it, Nseg is selected as N (it)
seg > N

(it−1)
seg >

· · · > N
(1)
seg such as all the new segments are square and spa-

tially homogeneous. Then, the pe vectors are built for each
segment e, and the new ∆ matrix is obtained using the Eq. 5
(see Algorithm 1). Once the compressed measurements are
acquired, the feature vector f̄l is obtained for each spectral
band l, hence the feature matrix F̄ is constructed as

F̄ =
[
f̄1, · · · , f̄L

]
∈ RNseg×L, (6)

where the rows contain the average spectral information of
each segment.

3.2. Data Clustering

At each iteration of the main algorithm, the downsampling
matrix ∆ is constructed, and it is used to obtain a partial clus-
tering of the pixels using a subspace clustering method. Since,
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Fig. 1. Our Proposed SPC infrared clustering approach. For each iteration it in the hierarchy, we design the coded apertures
using the decimation matrix ∆(it). With the designed codes, we acquire the compressed measurements with our SPC architec-
ture (see Fig. 3). Then, we obtain the classification features using Eq. 4, which involves multiplying the SPC measurements
with the Hadamard matrix W. Finally, we apply compressive spectral subspace clustering to acquire the clustering map for
the iteration it. After it iterations, the final segmentation map is obtained through the majority voting method in the partial
clustering results at each hierarchy step.

Fig. 2. Ground truth, visual and quantitative results (Overall Accuracy OA and Time in seconds) of different clustering ap-
proaches for the Indian Pines and Salinas Valley images. FMR[18]+SC and SPC-HSC [4] acquire SPC measurements from the
near-infrared (NIR) and visible (VIS) spectrum, while the others only use the information from the NIR.

at each iteration it, the number of segments Nseg is increased,
this approach can be seen as a multi-scale clustering of pixels.
Furthermore, denoting Ns as the number of scales or levels in
the hierarchy, the compression ratio given by using the SPC
architecture and the proposed clustering approach can be de-
termined as

γ̃ =
1

MN

Ns∑
it=1

N (it)
seg . (7)

In order to perform spectral clustering [19], we construct a
similarity graph G ∈ RMN×MN using the κ-nearest neigh-
bor approach described in [19]. Then, the cluster indices C̄
are obtained by applying the spectral clustering to the similar-
ity graph. Finally, the cluster membership of all the spectral
pixels in the full image are obtained by applying the upsam-
pling operator ∆T onto C̄, see Algorithm 2. Note that both,
the similarity graph construction and the spectral clustering
computation are performed on the feature matrix F̄. Hence,
the computational performance of the proposed method im-
proves over other traditional approaches.

4. RESULTS

4.1. Simulations

In this section, the proposed hierarchical compressed sub-
space clustering method for SPC measurements is tested on
two real remote sensing hyperspectral datasets: Indian pines
and Salinas. The ground truth of these datasets contains 16
land-cover classes. In this work, we use a region of interest
(ROI) from the Indian Pines image of 512 × 217 pixels and
200 spectral bands [20]. From the Salinas Valley image, we
use a ROI of 512× 192 spatial pixels, and 204 spectral bands
in the range of 240 to 2400 nm.

Figure 2 presents the ground truth, clustering visual and
numerical results on the two spectral datasets with four meth-
ods of the literature and our proposed approach with two
subspace clustering methods: spectral clustering[19] and
sparse subspace clustering [21]. Each row contains a differ-
ent dataset and each column is defined as follows: The first
column presents the ground truth. The second, which we



Algorithm 1 Downsampling Matrix Design
Require: Nseg , F̄
Ensure: ∆

1: procedure DSAMPLING DESIGN(F̄, Nseg)
2: kidx ← RegularSegms(F̄, Nseg) ▷ kidx contains the

segment labels
3: ∆← zeros(Nseg, length(kidx))
4: for e← 1 to Nseg do
5: pe ← find(kidx = e)
6: ne ← length(pe)
7: for j ← 1 to ne do
8: (δe)

T
(pe)j

= 1
ne

▷ Update each row of ∆
9: end for

10: end for
11: return ∆
12: end procedure

Algorithm 2 Data Clustering
Require: F̄ ∈ RNseg×L, ∆ downsampling matrix, κ clusters
Ensure: Segmentation of the spectral pixels: F1, · · · ,Fk

procedure DATA CLUSTERING(F̄,∆, κ)
2: G← Build Sim Graph(F̄) ▷ κ-nearest neighbor graph ▷

Obtain Cluster indices
C̄idx ← Spectral Clustering(G, κ) ▷ Spectral Clustering

[19]
4: Cidx ←∆T C̄idx ▷ Upsampling

end procedure

refer to as “FMR+SC”, corresponds to the method described
in [18], where δ is designed using super-pixels obtained
from an RGB image which was acquired as side information.
The third column, “SPC-HSC”, exposes the results using the
method proposed by authors in [4]. The fourth column shows
the results when directly clustering the full (non-compressed)
hyperspectral image. The fifth column presents the results
of clustering the reconstructed SI obtained via the fast re-
construction method shown in Eq. 3. Finally, the two last
columns correspond to clustering results obtained with the
proposed method. All methods use the spectral clustering
(“SC”) algorithm [19], except our method shown in last col-
umn which use sparse subspace clustering (“SSC”) [21]. It
is important to highlight that the two first methods acquire
SPC measurements from the visible (VIS) and near-infrared
(NIR) spectrum, while the others four methods (including
our proposed one) only use the information from the NIR.
Numerical results of the evaluated methods are presented in
Figure2, we shown the overall accuracy (OA) obtained by
each method at the top. Also, Notice that for the Indian Pines
dataset, the best OA is achieved by the proposed strategy in
this paper, using the “SSC” algorithm. On the other hand,
for the Salinas dataset, the best OA result is provided by
the “SPC-HSC” method, and the second-best OA results are
achieved by the proposed method with the “SSC” algorithm.
However, considering that the “SPC-HSC” method uses the
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Fig. 3. Single-pixel imaging of a hyperspectral “White”
scene. (a) Sketch of the experimental setup. (b) RGB com-
posite acquired with a commercial camera. (c) False RGB
composite obtained via Eq. (3) with Nseg = 64.

Fig. 4. (Left) Average spectral signature for each class. (Mid-
dle) Ground truth. (Right) Classification result via majority
voting with OA = 85%.

near-infrared (NIR) and visible (VIS) spectrum, our method
suggests a competitive alternative that does not require visible
spectrum information.

4.2. Experiments

We built a testbed in our laboratory to demonstrate the validity
of the proposed ideas, through a proof-of-concept prototype,
as shown in Fig. 3 (a). This prototype uses an uncoated
N-BK7 Bi-Convex lens (Lens 1) (Thorlabs LB1676-ML,
f1 = 100.0mm) as an objective lens to propagate the incom-
ing wavefront to image the scene onto the digital micromirror
device (DMD, Texas Instruments, D4120). The DMD intro-
duced a spatial modulation, and the resulting coded wavefront
propagates through two uncoated N-BK7 Bi-Convex lenses
(Lens 2-3) (Thorlabs LB1676-ML, f1 = 100.0mm) located
in sequence to reduce the wavefront propagation distance.



This coupled lens generated imaging over the surface of
a collimator lens (Ocean Insight, 74-UV with wavelength
range 185nm - 2500nm) coupled to an optical fiber (Ocean
Insight, QP1000-2-VIS-BX, with fiber core size 1000 µm).
This fiber transmits the collimated-modulated wavefront to
a NIR-spectrometer (Ocean Insight, NIRQUEST+2.5 Spec-
trometer with entrance slit 25 µm), which decomposes the
incoming wavefront into 512 spectral values in the wave-
length range 900nm - 2500nm, i.e., 512 pixels are captured
for each 128× 128 DMD pattern (each encoding pixel occu-
pied 2×2 DMD pixels). Here, the auxiliary grayscale camera
is used for calibration and monitoring purposes.

To demonstrate the proposed methodology classification
capability, we conducted experimental validations using one
composed target (named “White” scene), as shown in Fig. 3
(b)-(c). This target is composed of four white materials: (P1)
milk powder, (P2) sugar, (P3) bicarbonate, and (P4) salt. Us-
ing this scene, we aim to explicitly show the importance of
considering the NIR for classification as pixels of this scene
are very challenging to discriminate using only the informa-
tion from the visible spectrum (VIS). For five hierarchical
iterations with Nseg = {42, 82, 162, 322, 642} the resulting
compressive measurement exhibited 512 × Nseg spectrome-
ter pixels in size. The coded apertures patterns projected by
the DMD were generated via Eq. (2) with a Hadamard ma-
trix size of W ∈ RMN×MN and H ∈ RNseg×MN where
M = N = 128. Since the resulting matrix H is composed of
{−1, 0, 1} values and it is not feasible to load negative values
in the DMD [18], the sensing process is carried out by chang-
ing the -1’s values for 0’s. Then resulting binary pattern and
a complementary version (i.e., changing 1’s to 0’s and 0’s to
1’s) of it are projected on the DMD. Finally, the acquired two
measurements per pattern are reduced to y10 − y01 in post-
processing, i.e., y10 and y01 refers to the SPC measurement
obtained from the binary and complementary versions.

Figure 4 shows (left) the average spectral signature of
each class, (middle) the ground truth map, and (right) the
corresponding clustering map obtained by our method when
using the “White” scene as input. These results were achieved
by exploiting the NIR information preserved in the com-
pressed measurements. To support the classification results
shown in 4 (b), one representative spectral signature for each
material is plotted in Fig. 4 (c). These four signatures were
recovered directly from the compressed measurement via Eq.
(3). To further analyze the hierarchical classification perfor-
mance, Fig. 5 shows each individual clustering results for
Nseg = {42, 82, 162, 322, 642}, where we achieve an OA
of 81%, 65%, 83%, 82%, and 79%, respectively for each
Nseg . The higher classification accuracy was achieved for
Nseg = 162 (i.e., each segments have a size of 8×8), and the
lower one was achieved for Nseg = 642 (i.e., each segment
have a size of 2 × 2). Since the pattern’s pixel size propor-
tionally increases with the regular decimation pixel size (as
shown in Fig. 5 middle row), the acquired SPC measurements
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(a) OA: 81.90% (b) OA: 65.02% (c) OA: 83.83% (d) OA: 82.16% (e) OA: 79.42%

Fig. 5. (first row) Coded aperture structure for an arbitrary
number of segments. (second row) Raw compressed single-
pixel measurement. (third row) Individual classification re-
sults for five different decimation levels.

are more robust to noise artifacts (see Fig. 5 bottom row), a
critical consideration in infrared experiments. Here the clas-
sification accuracy obtained using Nseg = 82 is deliberately
set aside because it is assumed as an outlier.

5. CONCLUSIONS

This work presented a sensing matrix designed to extract
features directly from the compressed measurements in each
stage of the hierarchical model. We demonstrate that the
proposed imaging system, together with the sensing proto-
col and the computational algorithm, represents an efficient
alternative to estimate clustering maps without relying on
oversampling sensing protocols. This paper showed exten-
sive results on simulations and experimental proof-of-concept
implementation. These results demonstrated that creating the
final segmentation map through the majority voting method
in the partial clustering results at each hierarchy step with
the sensing matrices designed, achieves competitive results
against other state-of-the-art methods. The main contribution
presented in this document is the alternative to spectral clus-
tering in CSI measurements only using the NIR spectrum and
excluding the information from the traditional visible range.
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