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HSI Clustering
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Hyperspectral imaging
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» Traditional hyperspectral imaging techniques relies on Nyquist-Shannon sampling theorem.

« Require a fixed sampling rate along the three dimensions, leading to a large amount of
captured data and large acquisition times.



Compressive Spectral Imaging (CSl)
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Senses and simultaneously
reduces the data dimension
without any further processing
step.

Captures less samples than
traditional methods.
Assumes that f
represented as a
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Compressive Spectral Imaging
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« Then, the acquisition process
can be modeled as y = Hf,
where H is the sensing matrix
of the system.

« Using g and taking advantage of

sparsity of £, the original full HSI
can be recovered as
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From visible spectrum to NIR
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« Traditionally the scenes are acquired inside the visible spectrum range, i.e., beginning at
400 nm.
« This paper develops a clustering approach to obtain unsupervised pixel classification

directly from the compressive infrared single-pixel camera (SPC) domain (900 - 2500
nm).



Single pixel camera
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Sketch of the Sensing Process

SPC architecture excels due to its low implementation cost when acquiring a large
number of spectral band.
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Downsampling Matrix Design

Algorithm 1 Downsampling Matrix Design
Require: N.,.,, F W < {—17 1}KXK—> Hadamard Matrix
Ensure: A
1: procedure DSAMPLING_DESIGN(F, Ncg)
2: kiax + RegularSegms(F, Neg) > k; 4. contains the _ _ _
segment labels A € RNseg X M N— Decimation matrix
3: A « zeros(Nsegq, length(kidz))
4 for e < 1to N, do
5: p° « find(k;q. =€)
& e length(p?) fi = (1/K)ATW'y, = (1/K)ATWT WA, ~ f
7 for j < 1ton. do
8: (58)’&,6)55 = i > Update each row of A
9: end for
10: end for
11: return A

12: end procedure

Designed coded
aperture example



Proposed Method
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f, = W'y, = Af,

« Instead of performing the complete reconstructions, it is possible to directly extract
features from the compressed measurements.
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Compressive spectral subspace clustering

Algorithm 2 Data Clustering

Require: F € RV<es*% A downsampling matrix, # clusters

Ensure: Segmentation of the spectral pixels: Fy,-- -, Fy
procedure DATA_CLUSTERING(F, A, k)

2: G < Build_Sim_Graph(F') > k-nearest neighbor graph >

Obtain Cluster indices
Ciax < Spectral_Clustering(G, k) > Spectral Clustering

[19] ]
end procedure
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Simulations
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Experimentation
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Experimentation
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Experimentation

Example
Designed Codes

Ground truth

Final classification result via
majority voting. OA: 85%

Compressed Measurements

Classification

i

||
iy
i

) OA: 81.90%

| iillm 1] " Y

LLIL Dl fu

‘lumnull I mlnn”‘

i m IIIIII l‘lllﬂ

!‘llllli\'l I o
Rl illlr ||||‘u||m
Uil

MILLRIURT

1 Ill il IJ,I

1 w 1 .Il\l :‘“']A 'II‘ " |

I‘hIHI u Ih | i
n -

) OA: 65.02%

) OA: 83.83%

) OA: 82.16%

(e) OA: 79.42%

15



Conclusions

« The main contribution presented in this document is the alternative to spectral clustering in CSI

measurements only using the NIR spectrum and excluding the information from the traditional
visible range

« This work presented a sensing matrix designed to extract features directly from the compressed
measurements in each stage of the hierarchical model.

 We demonstrate that the proposed imaging system, together with the sensing protocol and the
computational algorithm, represents an efficient alternative to estimate clustering maps without
requiring the full HIS recovery.
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