

Hierarchical Compressed Subspace Clustering of Infrared Single-pixel Measurements

Miguel Marquez

Jonathan Monsalve

Kevin Arias

Henry Arguello

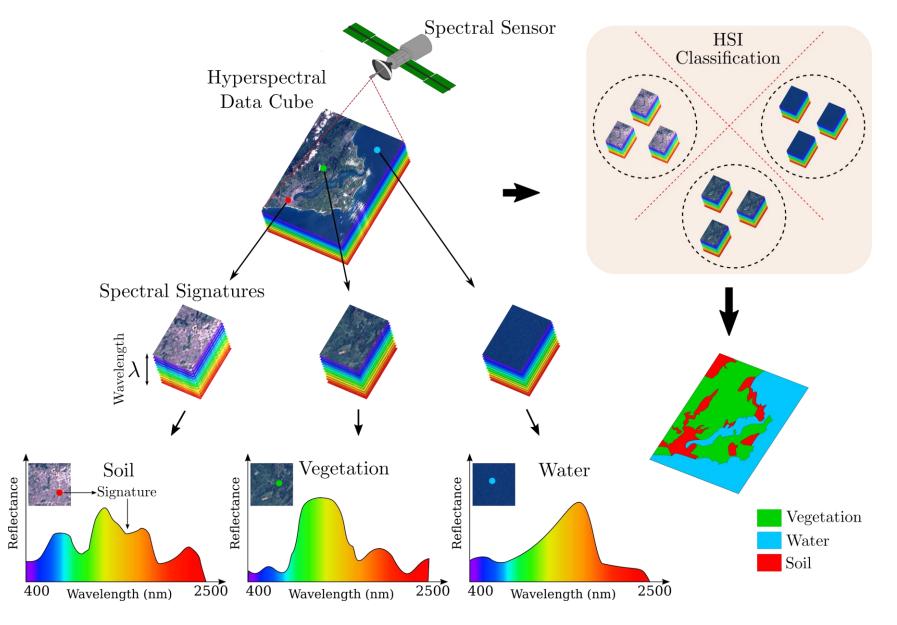
Third Symposium on Short Wave Infrared Imaging and Spectroscopy

Universidad Industrial de Santander, Bucaramanga, Colombia.

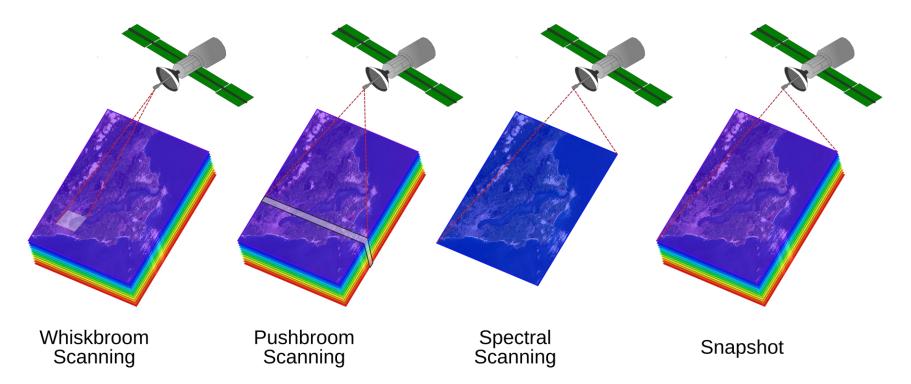
Karen Sanchez

Carlos Hinojosa

HSI Clustering

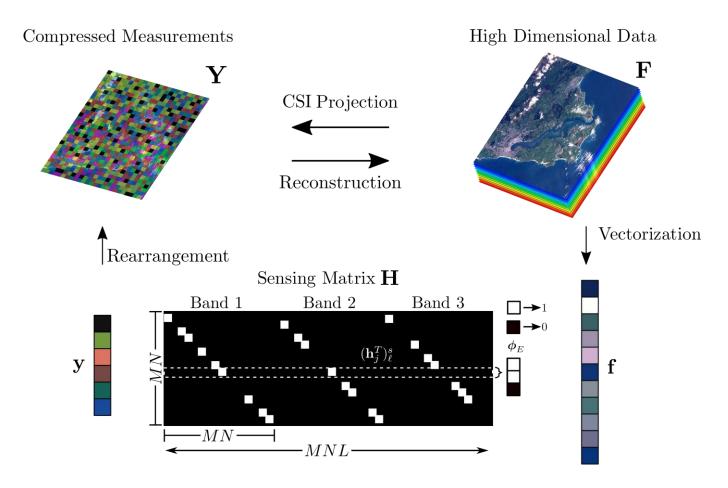


Hyperspectral imaging



- Traditional hyperspectral imaging techniques relies on Nyquist-Shannon sampling theorem.
- Require a fixed sampling rate along the three dimensions, leading to a large amount of captured data and large acquisition times.

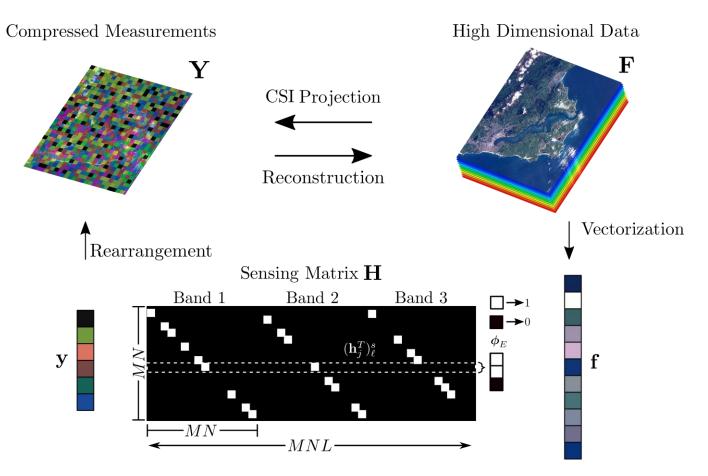
Compressive Spectral Imaging (CSI)



- Senses and simultaneously reduces the data dimension without any further processing step.
- Captures less samples than traditional methods.
- Assumes that f can be represented as a sparse vector θ in some basis

 Ψ , i.e, $\mathbf{f} = \Psi \boldsymbol{\theta}$.

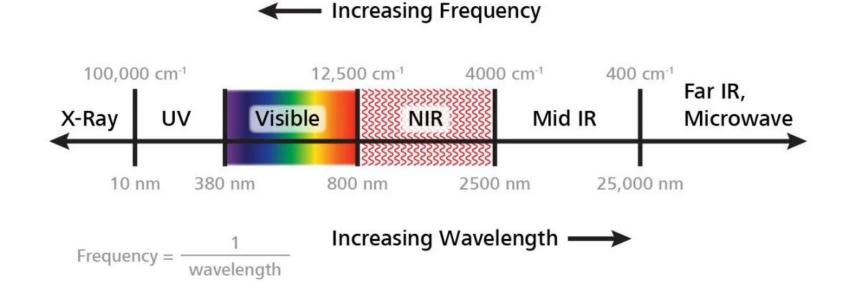
Compressive Spectral Imaging



- Then, the acquisition process can be modeled as y = Hf, where H is the sensing matrix of the system.
- Using **g** and taking advantage of sparsity of **f**, the original full HSI can be recovered as

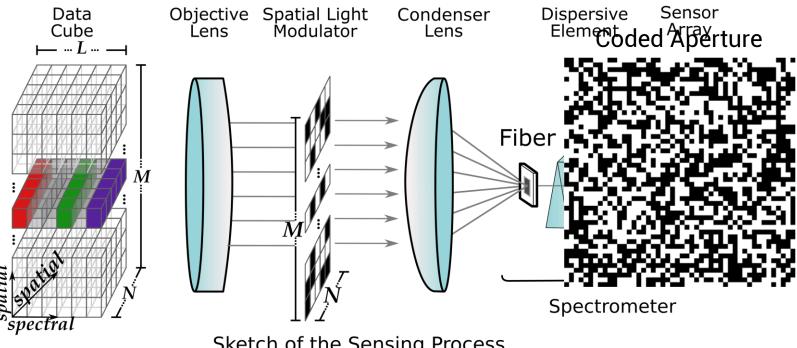
$$\mathbf{\hat{f}} = \mathbf{\Psi} \left\{ rgmin_{oldsymbol{ heta}} \| \mathbf{H} \mathbf{\Psi} oldsymbol{ heta} - \mathbf{g} \|_2^2 + \lambda \| oldsymbol{ heta} \|_1
ight\}$$

From visible spectrum to NIR



- Traditionally the scenes are acquired inside the visible spectrum range, i.e., beginning at 400 nm.
- This paper develops a clustering approach to obtain unsupervised pixel classification directly from the compressive infrared single-pixel camera (SPC) domain (900 - 2500 nm).

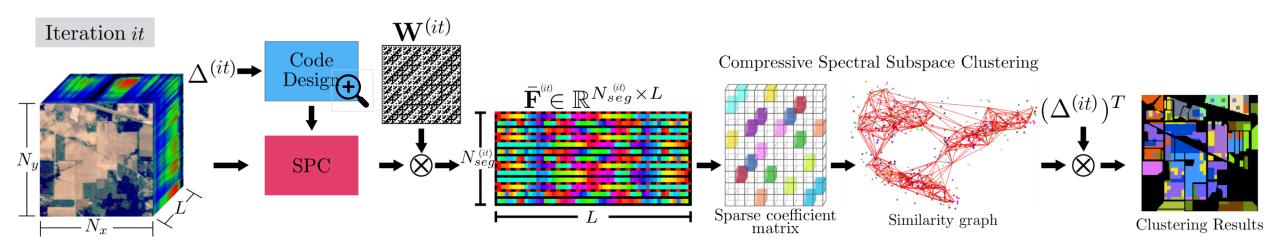
Single pixel camera



Sketch of the Sensing Process

SPC architecture excels due to its low implementation cost when acquiring a large • number of spectral band.

Proposed Method



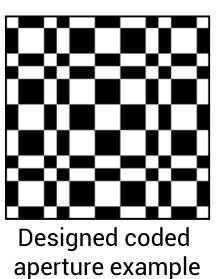
Downsampling Matrix Design

Algorithm 1 Downsampling Matrix Design	
Require: $N_{seg}, \bar{\mathbf{F}}$	
Ensure: Δ	
1: procedure DSAMPLING_DESIGN($\overline{\mathbf{F}}$)	$, N_{seg})$
2: $k_{idx} \leftarrow \text{RegularSegms}(\bar{\mathbf{F}}, N_{seg})$	$\triangleright k_{idx}$ contains the
segment labels	
3: $\Delta \leftarrow \operatorname{zeros}(N_{seg}, \operatorname{length}(k_{idx}))$	
4: for $e \leftarrow 1$ to N_{seg} do	
5: $\mathbf{p}^e \leftarrow \operatorname{find}(k_{idx} = e)$	
6: $n_e \leftarrow \text{length}(\mathbf{p}^e)$	
7: for $j \leftarrow 1$ to n_e do	
8: $ (\delta_e)^T_{(\mathbf{p}^e)_i} = \frac{1}{n_e} $	\triangleright Update each row of Δ
9: end for	
10: end for	
11: return Δ	
12: end procedure	

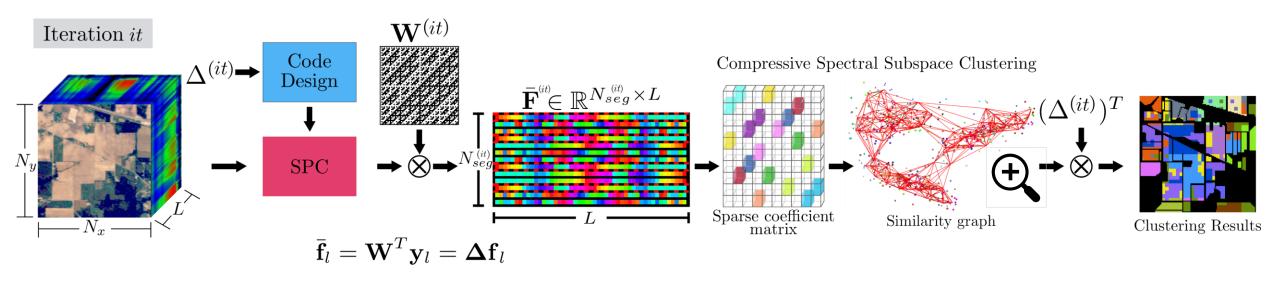
 $\mathbf{H}=\mathbf{W}\mathbf{\Delta}$ $\mathbf{W}\in\{-1,1\}^{K imes K}$ Hadamard Matrix

$$\mathbf{\Delta} \in \mathbb{R}^{N_{seg} imes MN}$$
 — Decimation matrix

$$\tilde{\mathbf{f}}_l = (1/K) \mathbf{\Delta}^T \mathbf{W}^T \mathbf{y}_l = (1/K) \mathbf{\Delta}^T \mathbf{W}^T \mathbf{W} \mathbf{\Delta} \mathbf{f}_l \approx \mathbf{f}_l$$



Proposed Method



• Instead of performing the complete reconstructions, it is possible to directly extract features from the compressed measurements.

Compressive spectral subspace clustering

Algorithm 2 Data Clustering

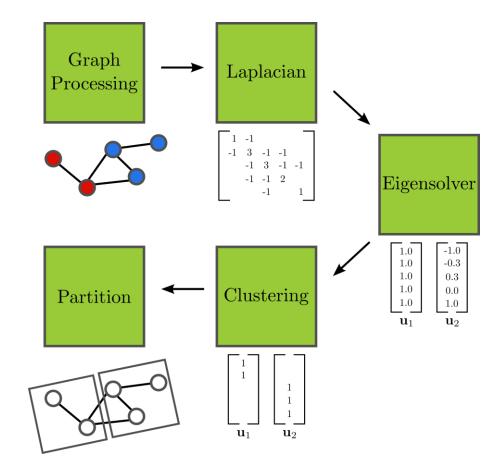
Require: $\bar{\mathbf{F}} \in \mathbb{R}^{N_{seg} \times L}$, Δ downsampling matrix, κ clusters **Ensure:** Segmentation of the spectral pixels: $\mathbf{F}_1, \dots, \mathbf{F}_k$ **procedure** DATA_CLUSTERING($\bar{\mathbf{F}}, \Delta, \kappa$)

2: $\mathbf{G} \leftarrow \text{Build}_\text{Sim}_\text{Graph}(\bar{\mathbf{F}}) \triangleright \kappa$ -nearest neighbor graph \triangleright Obtain Cluster indices

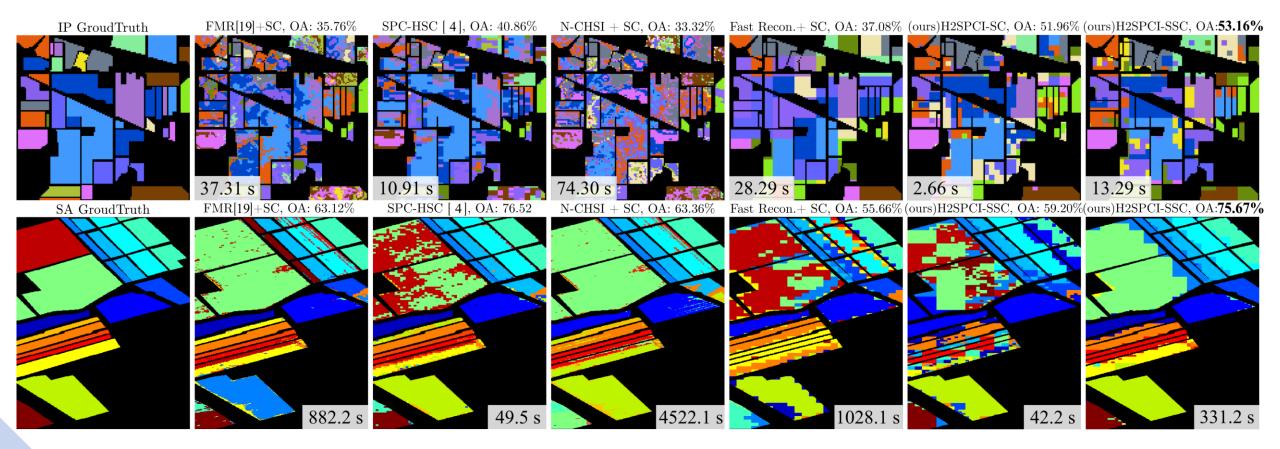
 $\bar{\mathbf{C}}_{idx} \leftarrow \text{Spectral}_{Clustering}(\mathbf{G}, \kappa) \triangleright \text{Spectral}_{Clustering}$ [19]

4: $\mathbf{C}_{idx} \leftarrow \mathbf{\Delta}^T \bar{\mathbf{C}}_{idx}$ end procedure

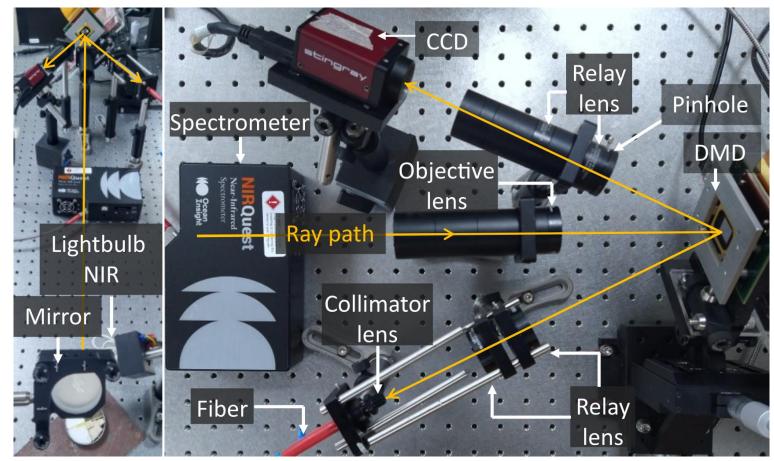
▷ Upsampling



Simulations

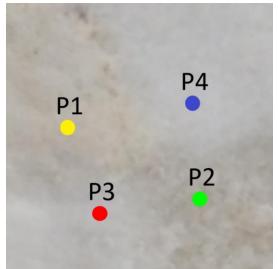


Experimentation



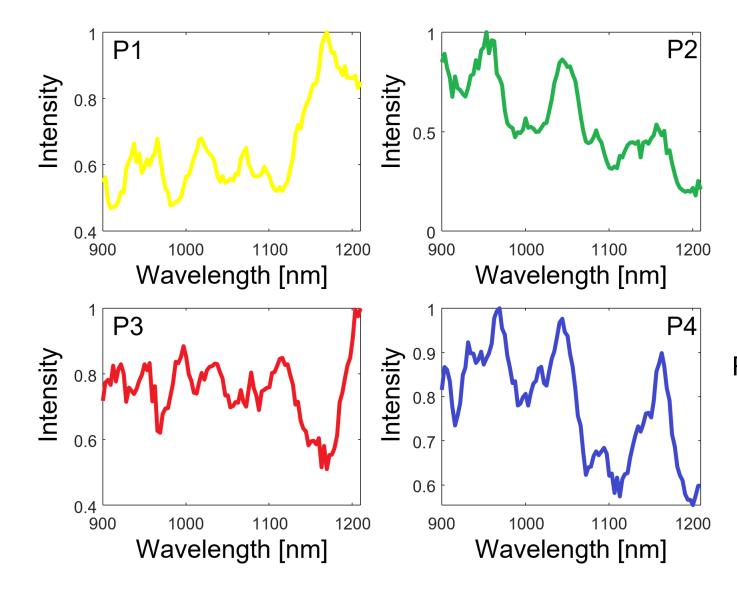
Experimental Setup

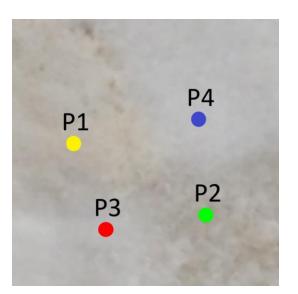
False RGB composite



RGB composite acquired with a traditional camera

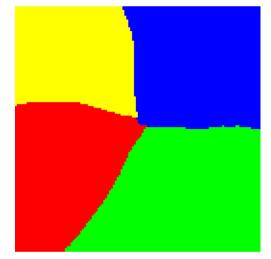
Experimentation



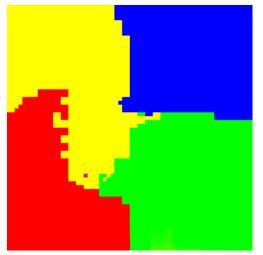


RGB composite acquired with a traditional camera

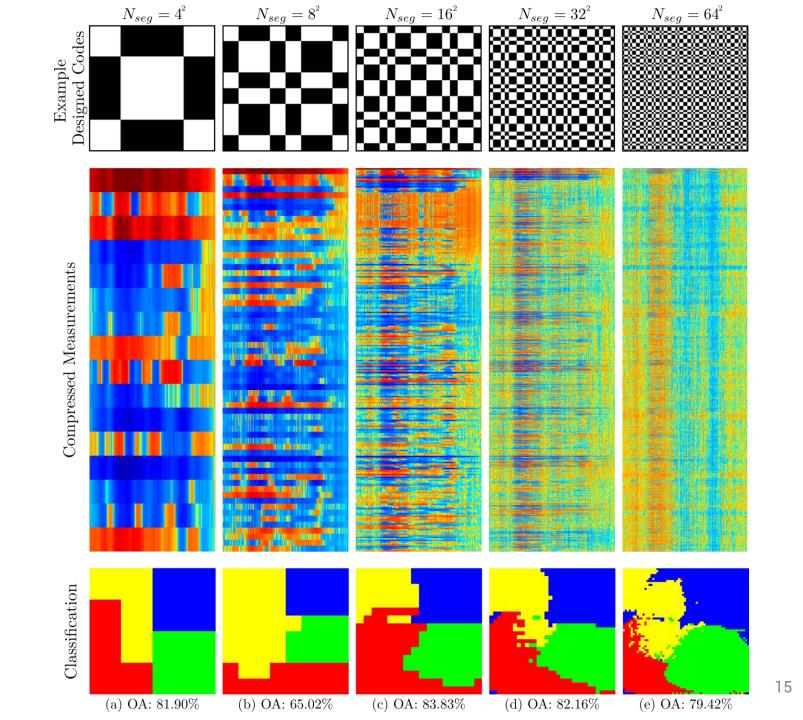
Experimentation



Ground truth

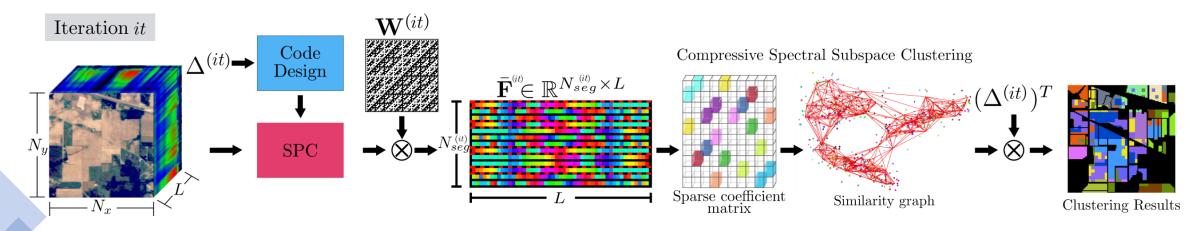


Final classification result via majority voting. OA: 85%



Conclusions

- The main contribution presented in this document is the alternative to spectral clustering in CSI measurements only using the NIR spectrum and excluding the information from the traditional visible range
- This work presented a sensing matrix designed to extract features directly from the compressed measurements in each stage of the hierarchical model.
- We demonstrate that the proposed imaging system, together with the sensing protocol and the computational algorithm, represents an efficient alternative to estimate clustering maps without requiring the full HIS recovery.



Thank You!

Miguel Marquez

Jonathan Monsalve

Kevin Arias

Karen Sanchez

Carlos Hinojosa

Henry Arguello

Società Italiana di Spettroscopia NIR

