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Abstract— Recent advances in deep learning led to sev-
eral algorithms for the accurate diagnosis of pneumonia
from chest X-rays. However, these models require large
training medical datasets, which are sparse, isolated, and
generally private. Furthermore, these models in medical
imaging are known to over-fit to a particular data domain
source, i.e., these algorithms do not conserve the same
accuracy when tested on a dataset from another medical
center, mainly due to image distribution discrepancies. In
this work, a domain adaptation and classification technique
is proposed to overcome the over-fit challenges on a small
dataset. This method uses a private-small dataset (target
domain), a public-large labeled dataset from another med-
ical center (source domain), and consists of three steps.
First, it performs a data selection of the source domain’s
most representative images based on similarity constraints
through principal component analysis subspaces. Second,
the selected samples from the source domain are fit to
the target distribution through an image to image trans-
lation based on a cycle-generative adversarial network.
Finally, the target train dataset and the adapted images
from the source dataset are used within a convolutional
neural network to explore different settings to adjust the
layers and perform the classification of the target test
dataset. It is shown that fine-tuning a few specific layers
together with the selected-adapted images increases the
sorting accuracy while reducing the trainable parameters.
The proposed approach achieved a notable increase in the
target dataset’s overall classification accuracy, reaching up
to 97.78% compared to 90.03% by standard transfer learning.

Index Terms— Chest X-ray, deep learning, domain adap-
tation, generative adversarial network, pneumonia diagno-
sis.

I. INTRODUCTION

PNeumonia is a lung infection that affects 7% of the world
population and is the leading cause of death worldwide in

children under five years, with about 1.4 million deaths every
year [1], [2]. Furthermore, every year are diagnosed two billion
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people with pneumonia. This respiratory disease can be treated
with antibiotics or antivirals, and the success of the treatment
strongly depends on its early detection [3].

Expert analysis of chest X-ray images is currently the
most widely medical imaging technique used world-wide to
diagnose pneumonia and a wide variety of diseases. The
popularity of X-rays is due to their relatively low cost, low
irradiation, and the easy access to the acquisition equipment.
Consequently, an estimated of 2 billion X-ray images are
acquired each year worldwide [4].

Nevertheless, the image quality of chest X-ray has some
limitations, such as low contrast, overlapping organs and
blurred boundaries, which seriously affect pneumonia detec-
tion [5], [6]. Especially in children, accurately diagnosing
pneumonia from chest X-rays remains a time-consuming task
even for experienced radiologists [7]. Another important prob-
lem is the lack of radiologists trained in low-income and
developing countries, even more in rural areas.

Due to advances in computing of recent decades, computer-
aided diagnosis (CAD) has emerged to support medical staff in
decision-making [8], [9]. In this sense, multiple computational
strategies such as generic, probabilistic, population-based, and
surface learning models have been developed to help health
professionals in the analysis of medical images, whether
for disease prediction, diagnosis or treatment. Specifically,
these strategies include Gaussian mixture models, conditional
random fields, statistical atlases, logistic regression, nearest-
neighbor methods, support vector machines, random forests,
among others [10]–[13].

More recently, the use of deep learning (DL) models has
revolutionized the field of medical imaging computing [14]–
[16]. Due to its ability to process large amounts of data with
high speed, and to extract complex characteristics not visible
to the human eye, this area of research became the most
appealing for the analysis of medical images in recent years
[17]. Deep learning approaches include recurrent neural net-
works, convolutional neural networks (CNN), auto-encoders,
and deep reinforcement learning techniques, among others
[18]–[20]. Precisely, recent advances in the application of deep
learning and computer vision in healthcare have allowed to
attain radiologist-level performance for pneumonia diagnosis
from chest X-ray images. For instance, authors in [21]–[23]
achieved an overall accuracy of 98%, 98.43% and 99.41%,
respectively, in the classification of a public pneumonia dataset
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with 5, 849 labeled images acquired in the Guangzhou Women
and Children’s Medical Center, China [24]. Despite these accu-
rate results, deep learning classifiers are well-known to over-fit
to a particular data domain source in medical imaging. That
is, a deep learning model trained on a large dataset originating
from one medical center does not conserve the same precision
when tested on a dataset from another medical center. This
challenge is mainly related to discrepancies in the appearance
of the images, to differences in acquisition protocols and/or
device technologies. Specifically, as we will show in this work,
a model trained on the previously mentioned dataset with an
overall accuracy of 98% only achieves 88% accuracy when
classifying 173 non-public chest X-ray images acquired at
a different clinical center. This represents a major challenge
limiting the clinical applicability of such technologies.

In this context, domain adaptation (DA) has emerged as
a transfer learning alternative to address the lack of massive
amounts of labeled data and the difficulty of deep learning
methods to obtain high performance when applied to small
datasets different from the one used during the training phase
[25], [26]. Precisely, DA is the area of machine learning that
enables knowledge to be transferred from one source domain
to a different but related target domain to increase the learning
models’ capability on the latter [27]. DA applications mainly
focus on natural images [28], telecommunication problems
[29], and, to a lesser extent, on medical applications [30].

It should be noted that other approaches related to the
relatively new DA concept already exist. In particular, one may
cite two large categories according to the modified domain:
domain transformation (DT-DA) which translates images from
one domain to another such that a specific task can be applied
directly to the transformed images; and latent feature-space
transformation (LFST-DA) which aligns the images from both
domains in a hidden common feature space in which the task
model is to be trained [31]. Both perspectives have recently
been addressed separately in the literature to analyze lung
X-rays using images from different demographic sources or
disease states. In [26] and [32], the authors proposed DT-DA
strategies for semi-supervised and unsupervised classification,
respectively. Other DT-DA works for the study of lungs have
been presented in the literature, based on feature transfer from
one imaging modality to another (cross-modality). However,
these works were mainly focused on image segmentation.
For instance, in [33] and [34], DA was performed from
computed tomography (CT) to X-rays. In [35], the authors
used histopathological images to transfer characteristics from
cytokeratins to PD-L1. Furthermore, a few unsupervised lung
X-ray imaging works based on the LFST-DA approach have
been studied, also focused on image segmentation [36], [37].

Considering the challenge discussed above on the scarcity of
labeled medical data and the difficulty of deep learning models
to generalize from one dataset to another, the main scientific
question addressed here is how to improve the classification
of a small dataset acquired in one center, taking advantage of
information from a larger public dataset acquired in a different
hospital?

This paper proposes a new DA technique to classify a
small chest X-ray dataset taking advantage of a large pub-

TABLE I
SUMMARY OF MAIN NOTATIONS

Variable notations
S Source dataset (large)
T Target dataset (small)

SP , SN Pneumonia, normal classes data in S
TP , TN Pneumonia, normal classes data in T

D Number of image pixels in one image
y An image sample in D × 1 vector form
d Number of eigenvalues from T

UP , UN
Subspace of T ∈ RD×d for pneumonia and
normal classes.

Id Identity matrix

EP , EN
The similarity score between an image and the
pneumonia or normal class subspace.

n1, n2 Number of images from SP , SN

lic dataset acquired in another clinical center. The resulting
algorithm is referred to as CX-DaGAN meaning Chest X-rays
Domain adaptation with Generative Adversarial Network. The
proposed technique is composed of three stages. First, a data
selection from a source dataset through similarity constraints
with the target dataset is performed. Then, a translation of the
selected source images to the target domain with a generative
adversarial network approach is processed. Finally, training of
a CNN using both sets, target and translated sets, is performed
in order to classify the target set. For testing, a sub-set from
the target set is used. This work is a substantial improvement
from the previous research published in [38].

II. METHODOLOGY

Overall, the proposed approach consists of three stages: first,
it selects from the source dataset the images which are the
most similar to the ones of the target domain; these images
are chosen based on a similarity function that measures the
subspace-projection error obtained by projecting the source
data onto the target subspaces of each class: pathological and
normal images. Second, it uses the selected source images
as input for a Cycle-GAN to generate images in the target
domain. This second step uses images from the train target
set to discriminate between the real and generated images
generated by the GAN. Finally, in the third stage, the translated
images and the small target train set are used to feed a CNN
pneumonia/normal classification network, and test it on the
test set from the target dataset. The network parameters are
further reduced by proposing a fine-tuning strategy. The overall
proposed method is depicted in Fig. 1. The following sections
provide more details of each stage (A, B, and C). Note that
stages A and B are preprocessing steps before training a
CNN network for pneumonia/normal classification of the X-
ray images in step C.
Notation. Table I summarizes the main notations used in this
paper.

A. Proposed Similarity-constrained Data Selection

This section introduces the step A of the proposed method
shown in Fig. 1 and detailed in Fig. 2. Let us denote by S the
set of medium to large labeled dataset (source), and by T the
small labeled dataset (target). Throughout the paper, we refer
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Fig. 1. Proposed domain adaptation and classification framework. First, the chest X-rays images from the source and training target domains are
fed into step (A) for the similarity-constrained data selection process. In step (A), images from the source domain are selected using a similarity
function that measures the subspace-projection error obtained by projecting the source data onto the training target data domain. Then, the selected
source images and the train target set are used as input to the proposed GAN-based image-to-image translation (Step B). The output of step (B)
consists of synthetic images generated from the GAN that follows the target image distribution. Finally, we fine-tune a pretrained CNN-based
classification network for pneumonia diagnosis using the generated images in step (B) and the training target set as input. The performance of the
proposed workflow is evaluated on the testing target set.

to “small” a dataset with less than 1,000 images, “medium”
a dataset containing between 1,000 and 5,000 images, and
“large” a dataset with more than 5,000 images. This choice is
based on the number of images needed to train a X-ray-based
pneumonia classifier from scratch with excellent (98%), good
(95%) and insufficient (90%) accuracy [39]. Furthermore, let
us denote by SP ⊆ S, and SN ⊆ S the subsets of images
labeled as pneumonia and normal, respectively, in the source
domain. Similarly, TP ⊆ T and TN ⊆ T denote the subsets of
images labeled as pneumonia and normal in the target domain,
respectively. ySP

∈ RD×1 represents an image sample from
the SP subset after reshaping it in a D-dimensional vector
form, i.e., D corresponds to the total amount of pixels in the
image. Similarly, ySN

∈ SN ,yTP
∈ TP , and yTN

∈ TN

denote vectorized images from the corresponding subsets.
First, every source and target data from TP and TN is
normalized to have zero mean and unit standard deviation.
Then, principal component analysis (PCA) is applied to select,
for each domain, d eigenvectors corresponding to the d largest
eigenvalues. These eigenvectors are used as bases of the
subspace for each subset. Specifically, the matrices UP ∈
RD×d and UN ∈ RD×d are obtained, used as the subspaces.
Note that UP and UN are semi-orthonormal, thus U ′

PUP = Id
and U ′

NUN = Id, where Id is the identity matrix of size d2 and
′ denote the transpose of the matrix. Furthermore, two types
of projections are performed: (1) project every image from
each source class onto the target subspace of the same class,
i.e., ySP

is projected onto UP and ySN
onto UN ; (2) project

every image from each source class onto the target subspace
of the opposite class, i.e., ySP

is projected onto UN and ySN

onto UP . Based on these projections, the following similarity
functions considering the projection errors are defined:

EP (y) = ∥UPU
′
Py − y∥2, (1)

EN (y) = ∥UNU ′
Ny − y∥2, (2)

where || ∗ ||2 stands for the ℓ2-norm. (1) and (2) are
used to project all images in SP and SN and build four
error vectors: q1 ∈ Rn1 ,q2 ∈ Rn2 ,q3 ∈ Rn1 and
q4 ∈ Rn2 . Specifically, the vector q1 is built as q1 ={
EP (y

1
SP

), · · · , EP (y
n1

SP
)
}

using all images (n1) from SP .
Similarly, q2 =

{
EN (y1

SN
), · · · , EN (yn2

SN
)
}

is formed using
all images (n2) from SN ; q3 =

{
EN (y1

SP
), · · · , EN (yn1

SP
)
}

;
and q4 =

{
EP (y

1
SN

), · · · , EP (y
n2

SN
)
}

.
The vectors q1 and q2 are sorted in ascending order, and

vectors q3 and q4 in descending order. Finally, considering
the first k values from each error vector, the corresponding
k images from the source domain (SN and SP ) are selected
and used as input for the proposed cycle-GAN-based network
shown in step (B) of Fig. 1. Note that in this document, “sim-
ilarity” is named for the minimum mathematical difference
between pixel values of two spatial sets. A human inspection
of the images was not considered to establish the similarity.
This way of selecting images from the source set is guided
by the idea of choosing the images that are the most similar
intra-class to those from the target set, and the most different
inter-class between the two domains.

B. Proposed GAN-based Image-to-Image Translation

After selecting the most similar images from the source
dataset (with respect to the target domain images) using
the proposed subspace-based approach, a multi-domain and
unpaired image-to-image (I2I) translation network is used
to generate images following the target domain distribution.
Specifically, Step B generates the same number of images that
were selected from the source dataset by Step A. The proposed
network is depicted in Fig. 1 (step B) and detailed in Fig. 3.
Specifically, the I2I translation strategy [40] is adopted to map
images from the two domains corresponding to the same class
(ySP

⇄ yTP
, ySN

⇄ yTN
).
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Fig. 2. Step A of Fig 1. Similarity-constrained data selection via subspace projection error. The circled blue numbers represent the order of the
stages in the figure. First, we calculate a subspace basis for each target class using principal component analysis (PCA). Second, the images from
each class in the source domain are projected onto the subspaces of T within their corresponding classes. Third, the results of these projections
are obtained. Fourth, each source image is projected onto the opposite class subspace basis, and the results are obtained in the fifth lines. Sixth,
for each case, we calculate the projection error between the projected and original corresponding image through the similarity functions shown in
Eq. (1)-(2). Finally, we select the images with the lowest projection error when projecting the images onto subspaces of the same classes and the
largest error when projecting the images onto the subspaces of the opposite classes.

In this work, the Cycle-GAN [40] is adopted to learn two
mappings: S → T , and T → S, with generators GS→T (yS)
and GT→S(yT ), so that discriminators DT and DS cannot
distinguish between real and synthetic images generated by
the generators. In a Cycle-GAN network, GS→T and its
discriminator DT are used to define the adversarial learning
objective loss as

Ladv (GS→T ,DT ) = Eys∼yS
[log(1−DT (GS→T (ys))] (3)

+Eyt∼yT
[logDT (yt)] ,

where E denotes the expected value over the data instances
specified in the subindex.

A similar adversarial loss can be designed for map-
ping GT→S and its discriminator DS as well, i.e.,
minGT→S

maxDS
Ladv(GT→S , DS). To preserve sufficient

low-level content information, we use the cycle-consistency
loss [40] to force the reconstructed synthetic images y′s and
y′p to resemble their inputs ys and yt:

Lcyc(GS→T , GT→S) = Eys∼yS
[∥y′s − ys∥1] (4)

+Eyt∼yT
[∥y′t − yt∥1] ,

where y′s = GT→S(GS→T (ys)), y′t = GS→T (GT→S(yt)),
and ∥ · ∥1 is the ℓ1-norm. The generative adversarial training
with cycle-consistency enables synthesizing realistic-looking
radiographs across domains. However, there is no guarantee
that high-level semantics would be preserved during transla-
tion, thus decreasing the classification accuracy.

To improve the classification accuracy on the generated
synthetic target images, a classification model F was included
in the GAN-based network to guide the training by considering

the classification loss. Specifically, the classification model F
is learned on the synthetic target data T̄ = {GS→T (yS), L̄S},
where L̄S represent the corresponding labels (Normal or
Pneumonia) of the synthetic T̄ data. The binary cross-entropy
loss was used to classify the two categories:

Lcls(F , T̄ ) = −Et̄∼T̄

C∑
c=1

1c log
(
σ(F (c)(yt̄)

)
, (5)

where σ is the softmax function, 1c = 1 if an input image yt̄
belongs to class c ∈ C = {Normal,Pneumonia}, otherwise
1c = 0. The final objective of our proposed GAN-based
network for synthetic target images generation is the sum
of adversarial learning losses, cycle consistency loss, and
classification loss:

L = Ladv (GS→T ,DT ) + Ladv (GT→S ,DS) (6)
+λLcyc(GS→T , GT→S) + Lcls(F , T̄ ).

It is worth mentioning that, for ease of notation, the above
equations were developed without distinguishing between the
two classes. However, during implementation, four generators
described the mappings from source/target images with pneu-
monia/normal to target/source images, respectively. Similarly,
four discriminators were associated with each generator out-
put. Also, the same classification network (F) was used in the
last step of the proposed framework shown in Fig. 1, which
is described in the following section.

C. CNN-based Classification
The augmented training dataset obtained following the steps

A and B detailed in the previous sections is used to feed a con-
volutional neural network (CNN) trained to perform the final
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Fig. 3. Step B of Fig 1. Proposed GAN-based I2I architecture used to translate chest X-ray images from the source domain (Normal or Pneumonia)
to its corresponding class in the target domain. The network also translates back the generated images to the source domain to maintain the
cycle consistency. To ensure the generated synthetic images maintain the high-level semantics after the transformation and improve classification
accuracy, a classification model was incorporated to guide the training by considering the classification loss. The training set of target domain was
used to measure the adversarial loss during training.

Fig. 4. Step C of Fig 1. It starts by using the pretrained weights of the Xception architecture on ImageNet and investigate different fine-tuning
settings to achieve the highest accuracy while training fewer parameters. It uses the generated images obtained by following steps (A) and (B) of
the proposed workflow as input to this architecture.

classification. In this work, the Xception CNN was adopted
as backbone to extract features and used a fully connected
layer at the end of the network to perform the classification.
The Xception [41] is an extension of the Inception architecture
which replaces the standard Inception modules with depthwise
separable convolutions. Instead of partitioning input data into
several compressed chunks, it maps the spatial correlations for
each output channel separately, and then performs a 1 × 1
depthwise convolution to capture cross-channel correlation.
This is essentially equivalent to an existing operation known
as a “depthwise separable convolution”, which consists of
a depthwise convolution (a spatial convolution performed
independently for each channel) followed by a pointwise con-
volution (a 1× 1 convolution across channels). The Xception
architecture is shown in Fig. 4. In general, the network can be
divided in three sections: the entry, middle and exit flow, where
the middle flow is repeated eight times. Given the limited
size of the training dataset, pre-trained weights from ImageNet
dataset were used to initialize the network and fine-tuned the
layers of the Xception to adapt them to the specific task of
pneumonia detection. Section III-C investigates different fine-
tuning settings to achieve high accuracy while training less
parameters.

III. RESULTS

This section illustrates the efficiency of the proposed CX-
DaGAN classification algorithm for normal and pneumonia

images on a small chest X-rays dataset. All simulations were
implemented in Python with Tensorflow 2.3 and ran on an
Nvidia Quadro RTX 6000 GPU with 24 GB of memory.

A. Datasets and Metrics
Datasets. The proposed CX-DaGAN algorithm was tested

using two datasets for domain adaptation: a large source
dataset (S) from which we extracted and transformed a se-
lected number of images; second, a small target dataset (T )
from which we performed the classification. In this work, a
private dataset was used as T and a publicly available dataset
as S.

Specifically, the “Chest X-ray Images (Pneumonia)
dataset”1 was used as S which consists of 5, 849 labeled
images acquired in the Guangzhou Women and Children’s
Medical Center in China [24]. The 8-bit X-ray grayscale
images are separated into 4, 266 pneumonia (SP ) and 1, 583
normal (SN ).

On the other hand, 573 chest X-ray images acquired at
the Toulouse University Hospital in France were used as
target dataset T . Each image of T was labeled as pneumonia
or normal class by two expert radiologists. The dataset T
is divided into 275 normal and 298 pneumonia images. In
the following experiments, we split T in 400 images for

1The dataset is available for free download at
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2022.3182168

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universidad Industrial de Santander. Downloaded on September 13,2022 at 22:43:53 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2022

training and the remaining 173 for testing, which corresponds
to 69, 8% and 30, 2% of the data, respectively. To train and
evaluate the proposed CX-DaGAN method, images with a
fixed size of 224 × 224 pixels were considered.

Metrics. To quantitatively evaluate the performance of the
proposed method, three metrics [42] were computed: Accuracy
(ACC), F1 score (F1), and Area under the ROC curve (AUC).

B. Quantitative Classification Results

For the testing chest X-ray images, the CX-DaGAN al-
gorithm was used to predict the probability of pneumonia.
By comparing with the binary ground-truth labels, the overall
accuracy of the proposed method was calculated in extensive
simulations, as shown in Table III. In this table, each value
corresponds to the average and standard deviation of 10
realizations of the proposed method, evaluated on 173 images
from the target dataset. In this Table III, the number of images
used for training throughout the entire framework was varied.
Specifically, between columns and rows, the number of images
from target and source, respectively, changes. Note that due
to the small-size of the target dataset, the maximum number
of target images used for training was 400 (see columns in
Table III). On the other hand, the number of images from
the source domain chosen by the similarity-constrained data
selection step was simultaneously varied. It is worth noting
that this method was designed for selecting the same amount
of images from each class in S, i.e., after the similarity phase
(A), the proposed method ensures 50% of normal (disease-
free) and 50% of pneumonia images to feed the step B. Thus,
considering the composition of the unbalanced public dataset
used in these experiments, the maximum number of X-rays
from S was 2400, which corresponds to 1200 images of each
class (see rows in Table III).

In deep learning, specially for CNNs, it is well known that
a greater number of labeled training samples leads to better
classification [43], [39]. In general terms, Table III shows that
the classification accuracy is lower using fewer target images
for training the CX-DaGAN algorithm. Conversely, the best
results are concentrated in the right area of the Table, where
we used more images from the target dataset. However, it can
also be observed vertically that using more images from source
domain does not necessarily imply better accuracy. Instead,
there is a central area with combinations of data that are
particularly interesting.

In the highest case of average precision, the data showed
that the pneumonia prediction accuracy obtained by the CX-
DaGAN proposed algorithm is higher than 97% when training
using 250 images from the target and 400 images from the
source set. Similarly, high accuracy results can be achieved
by training the algorithm with 400 images from the target and
200 images from the source. For a deeper analysis of results in
Table III, Fig. 5 presents the 20 highest average classification
results, without considering their standard deviation (STD), or-
ganized in descending order and graphed with their respective
STD. Note that the best classification average value is 97,78.
However, its corresponding STD is 0,7. On the other hand,
the third highest average rating in this plot is 96,75. In this

case, the STD is lower (0,4), which can be interpreted as a
statistically more stable and reliable result. Therefore, it is not
possible to select only one combination of target/source data
as the “best” since results can vary between the ranges defined
by the STD. Please note that this table aims to provide results
with different source/target data combinations to allow the user
select the best combination according to the data availability.
Figure 6 shows a histogram with all the error values of Table
III to visualize their behavior. Note that the mean of the error
values is 0,732 and the standard deviation of the error values
is 0,231.

The ten highest average accuracy results from Table III, their
STD, and the corresponding target/source data combination for
training are shown in Fig. 7. Note that the “x” and “y” axis
correspond to the number of “target” and “source” images used
for training, respectively. The size of each dot is associated
with the accuracy value: larger dots indicate better precision,
as conventions dictate; the color of the dot indicates the value
of the standard deviation, where red corresponds to a higher
STD and green to a lower one. The aim of this plot is to expose
the most accurate options achieved by the proposed method,
according to the required number of images for training, and
their STD.

The results shown in Tables III, IV, and V were obtained
using d = 200 in step A. Conversely, OA results of CX-
DaGAN method using other values of d = 60, 100, 140, 180
for the step A are presented in Table II. Note that subspaces
UP and UN have dimensions RD×d and consequently the
upper bound of d in this example is 298 for UP and 275
for UN , corresponding to TP and TN , respectively. One may
remark from the OA values in Table II that the choice of d has
limited influence on the accuracy of CX-DaGAN method. This
observation is sustained by the fact that 88% of the images
selected from S within step A were the same for all d values
evaluated. Accordingly, d = 200 eigenvectors (≈ 70%) were
chosen, to run the following simulations given that this value
leads to the best balance between classification accuracy and
algorithm performance.

TABLE II
CLASSIFICATION RESULTS IN TERMS OF OVERALL ACCURACY (OA) OF

THE CX-DAGAN ALGORITHM FOR DIFFERENT VALUES OF d IN STEP A
(AVERAGE OVER 10 REALIZATIONS).

d 60 100 140 180 200
(20,9%) (34,9%) (48,8%) (62,8%) (69,8%)

OA 95,0 ± 0,3 96,2 ± 0,3 95,5 ± 0,4 96,8 ± 0,3 97,6 ± 0,4

C. Ablation Studies

Two ablation experiments were conducted to evaluate the
configuration of the proposed training pipeline. The first
ablation study (Ablation study 1) evaluates the influence of
the fine-tune training in the step C of the proposed approach.
The second ablation study (Ablation study 2) validates the
importance of each step of the CX-DaGAN algorithm in the
training procedure, evaluating the separate use of one or two
of the three steps. Furthermore, in the Ablation study 2, the
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TABLE III
QUANTITATIVE CLASSIFICATION RESULTS FOR DIFFERENT DATA COMBINATIONS (TARGET/SOURCE) IN THE TRAINING (AVERAGE OVER 10

REALIZATIONS).

(↑) Overall accuracy (%)
Images Target → 0 50 100 150 200 250 300 350 400

↓ Source % 0% 12,5% 25% 37,5% 50% 62,5% 75% 87,5% 100%
0 0% 51,33 ± 1,2 74,92 ± 1,1 84,51 ± 1,2 89,75 ± 1,0 90,56 ± 0,8 92,04 ± 0,9 92,81 ± 0,8 94,69 ± 0,8 91,09 ± 0,9

50 0,9% 52,33 ± 1,0 80,39 ± 1,1 81,32 ± 0,8 88,48 ± 0,9 90,92 ± 0,9 91,08 ± 0,6 94,09 ± 0,6 94,75 ± 0,9 95,75 ± 0,7
100 1,7% 52,23 ± 1,1 78,85 ± 0,8 90,15 ± 1,2 92,81 ± 1,0 90,81 ± 0,8 95,21 ± 1,1 94,12 ± 0,4 94,90 ± 0,8 94,90 ± 0,6
150 2,6% 58,64 ± 0,9 83,15 ± 1,0 84,84 ± 0,8 86,71 ± 0,8 89,90 ± 1,0 93,89 ± 0,8 93,81 ± 0,9 95,58 ± 0,7 95,56 ± 0,9
200 3,4% 59,34 ± 1,1 80,42 ± 1,0 89,27 ± 0,9 91,01 ± 0,9 89,38 ± 0,8 94,68 ± 0,9 94,85 ± 0,7 95,62 ± 0,6 97,02 ± 0,8
250 4,3% 59,77 ± 0,9 86,23 ± 0,7 83,07 ± 0,8 84,34 ± 1,2 89,38 ± 1,0 91,82 ± 1,2 94,95 ± 0,6 95,75 ± 0,6 95,66 ± 0,7
300 5,1% 62,44 ± 1,0 81,19 ± 0,8 84,84 ± 0,7 87,38 ± 0,6 90,06 ± 0,7 93,41 ± 0,4 94,35 ± 0,6 94,89 ± 0,5 95,46 ± 0,5
350 6,0% 61,88 ± 1,0 80,61 ± 0,9 84,84 ± 0,6 89,37 ± 0,7 91,04 ± 0,6 91,06 ± 0,7 94,51 ± 0,4 95,01 ± 0,5 96,70 ± 0,6
400 6,8% 63,11 ± 1,2 80,51 ± 0,9 83,96 ± 1,0 86,91 ± 0,8 92,61 ± 0,5 97,78 ± 0,7 95,02 ± 0,4 96,75 ± 0,4 95,85 ± 0,3
600 10,3% 66,37 ± 0,9 76,11 ± 1,0 83,19 ± 0,6 85,84 ± 0,7 87,61 ± 0,6 84,07 ± 0,6 87,61 ± 0,5 90,27 ± 0,4 92,04 ± 0,4

1000 17,1% 67,26 ± 0,9 79,65 ± 0,6 87,61 ± 0,8 85,84 ± 0,5 87,61 ± 0,4 88,5 ± 0,7 90,27 ± 0,5 86,73 ± 0,5 93,81 ± 0,5
1600 27,4% 68,14 ± 0,8 75,22 ± 0,6 76,99 ± 0,7 80,53 ± 0,5 87,61 ± 0,4 84,96 ± 0,4 86.73 ± 0,4 92,04 ± 0,4 90,27 ± 0,4
2400 41,0% 70,80 ± 0.7 82,3 ± 0,6 83,19 ± 0,5 80,53 ± 0,6 80,53 ± 0,7 89,38 ± 0,5 86,73 ± 0,5 88,5 ± 0,4 91,15 ± 0,3

Fig. 5. Twenty highest overall accuracy results from Table III in
descending order and their STD.

Fig. 6. Histogram of the error values from the results presented in Table
III.

number of training images of the two sets, target and source,
are updated simultaneously.

1) Ablation Study 1: In this experiment, the fine-tune train-
ing on the Xception architecture shown in Section II-C was
performed. The pre-trained weights from the ImageNet dataset
were first loaded and then each block (entry, middle, and exit
flow) fine-tuned while freezing the other layers. The network
was trained using Adam optimizer with a learning rate of
0.0001, a batch size of 16, a dropout of 0.2 before the decision
layer, and 100 epochs. The mean F1-score results when fine-

Fig. 7. Ten highest overall accuracy average results achieved with the
proposed method (dot size), STD (dot color), and their corresponding
data combinations of target/source in the training, presented in the “x”
and “y” axis, respectively.

tuning different blocks of the Xception are shown in Fig. 8.
One may observe that, fine-tuning the middle flow block of
the Xception architecture leads to a very similar performance
compared to fine-tuning all the network; hence, it is unneces-
sary to retrain all the Xception network. Consequently, in the
following experiments, only the middle flow was fine-tuned as
it provides the best results.

2) Ablation Study 2: For this experiment, combinations of
number of images from target/source data were selected from
Table III to perform an ablation study presented in Table
II. Specifically, the accuracy results of the proposed method
were calculated for seven target/source data combinations by
eliminating one or two of the three main steps (A, B, and C)
of our proposed CX-DaGAN algorithm.
The column Step C, which gives the worst results in Table IV,
presents the classification of the test images of the small/target
dataset through the Xception neural network. For this, the
CNN was fine-tuned with the number of source and target
images indicated in each row. In this case, source images used
to complement the training dataset are randomly selected. Note
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Fig. 8. Mean results when fine-tuning different blocks of Xception. Fine-
tuning the middle flow block of the Xception architecture leads to a very
similar performance compared to fine-tuning all the network.

that the most accurate result is obtained in this column with
the largest number of images from each dataset. It should be
noted that although 400 images from the target dataset are
used in two cases, the highest precision is obtained when more
images (350) are incorporated from the source dataset. Thus,
combining a total of 750 tagged images for retraining, the
accuracy was of 88.78%.
On the other hand, the results are better when we use two steps
of our method. For instance, in “Steps A + C”, the similarity-
constrained stage selects the source images to train the CNN.
In this way, an increase of up to 7.91% in the average accuracy
was achieved.
Then, the “Steps B + C” column shows the results of randomly
selecting images from target and source, generating synthetic
source images based on Cycle-GAN, and training the Xcep-
tion. In this case, an increase of up to 4.73% compared to using
only stage C was observed. Finally, the last row in Table IV
shows the result using the three steps (A + B + C). It is evident
that the simultaneous combination of all the steps allows a
better performance of our proposed method, compared to using
a part of it, thus proving the importance of each of these steps.
It is worth mentioning that the results reported in the Tables
III, IV, and V include the cross-validation technique, which is
used to evaluate the results of statistical analysis and ensure
that they are independent of the partition between training and
test data. Note that, as indicated in the table titles, each result
in Tables II and III included 10 realizations, and each result
in Tables IV and V included 30 realizations.

D. Comparison Results

1) Other classification methods: In order to compare the
performance of our proposed CX-DaGAN algorithm with
other state-of-the-art methods, the above reference approaches
were implemented and tested:

• TL: Transfer learning with two chest X-rays datasets.
This approach consists in considering a CNN previously
trained with the ImageNet dataset, and retraining it with
all available source images (5216 samples) + target
images (400 samples). The resulting training network was
used to classify the test target set.

TABLE IV
QUANTITATIVE CLASSIFICATION RESULTS OF THE ABLATION STUDY 1.

IMPORTANCE OF EACH STEP IN THE PERFORMANCE OF THE

CX-DAGAN ALGORITHM (AVERAGE OVER 30 REALIZATIONS).

Images for Train (↑) Overall accuracy (%)

target source Step
C

Steps
A + C

Steps
B + C

Proposed
method:

A + B + C
100 100 84.72±2.5 88.93±1.6 87.78±1.7 90.15 ± 1.2
250 100 83.78±3.6 90.86±0.4 89.09±1.1 95,21 ± 1,1
250 400 85.55±1.1 89.50±0.1 88.79±2.3 97,78 ± 1,5
350 250 82.60±1.7 94.40±1.7 89.09±1.1 95,75 ± 0,6
350 400 87.32±0.4 93.22±1.5 90.56±1.7 96,75 ± 1,0
400 150 87.91±0.4 94.69±0.7 90.27±0.7 97,02 ± 1,8
400 350 88.78±4.6 96.69±0.7 93.51±1.1 96,70 ± 1,4

• NO-S: No source images. In this experiment, a CNN pre-
trained with the ImageNet dataset is re-trained with target
images (400 samples), assuming no access to a second
(source) X-ray dataset.

• RAND-S: Random selection of source images. In this
case, the CNN is retrained on a training dataset consisting
in target images and randomly selected source images.
This experiment aims the contrast of increasing the
training dataset randomly compared to our source image
selection method.

• SDASC: Subspace-based Domain Adaptation using Sim-
ilarity Constraints [38], a recent method of augmenting a
target dataset with source images to improve classification
results.

In all cases, the average over 30 realizations and the clas-
sification of 173 samples from the target dataset are reported.
To ensure a fair comparison, all the methods used the same
network backbone but with different optimization procedures.
However, to broaden the comparison and to evaluate the
consistence of our method, a discussion with other backbones
is included using VGG-16, ResNet-50, and Xception networks.
These results are reported in Table V.

TABLE V
QUANTITATIVE CLASSIFICATION RESULTS OF FIVE DATA-BASED

METHODS (INCLUDING OUR PROPOSED METHOD) FOR THREE

DIFFERENT CNNS. ALL METHODS INCLUDE 400 IMAGES FROM THE

TARGET DOMAIN FOR TRAINING (AVERAGE OVER 30 REALIZATIONS).

Metric S VGG-16 ResNet-50 Xception
Method Images ACC F1 AUC ACC F1 AUC ACC F1 AUC

TL 5216 75.05 74.15 0.74 63.72 62.48 0.62 88.36 88.47 0.87
NO-S 0 85.84 85.83 0.85 90.27 90.26 0.90 90.03 90.03 0.88

RAND-S 100 85.84 85.84 0.85 87.61 87.61 0.88 89.52 88.19 0.90
200 81.42 81.41 0.82 90.27 90.27 0.90 89.98 89.68 0.89

SDASC 100 84.96 84.96 0.84 91.15 91.15 0.91 93.25 92.54 0.92
200 88.50 88.50 0.88 93.69 93.48 0.93 96.18 95.96 0.95

CX-DaGAN 100 85.25 86.22 0.86 92.04 92.03 0.92 94.90 92.03 0.92
200 90.02 90.12 0.90 94.12 93.97 0.94 97.02 96.91 0.96

In general, all the methods shown in Table V perform better
using the Xception network for the classification task, except
for the NO-S method. NO-S method provides the best result
by using only the target dataset. Overall, the results shown in
Table V suggest that the classification accuracy is improved
by adding data from another (source) dataset. However, the
samples used to increase the size of the training database
should be adequately selected. In particular, RAND-S method,
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consisting in selecting randomly images from the source
dataset, is shown to degrade the classifier’s accuracy. On the
other hand, the methods SDASC and CX-DaGAN achieve
the best results due to careful data selection. Indeed, the
proposed CX-DaGAN method presents a significant advantage
in classification accuracy over the other algorithms in terms
of ACC, F1, and AUC results. It is worth highlighting that
SDASC and the proposed CX-DaGAN method were designed
for binary classification. Therefore, a disadvantage of the
proposed method, specifically for step A, which is based on
data selection through equal and crossed classes projection, is
that it can not be applied directly to a multi-class problem.

E. Visual Results

This section presents visual results of each stage of the
proposed method.

1) Step A: First, images from the source dataset are selected
based on error metrics that account for the similarity between
these images and the target domain when projected on their
subspaces. To get a deeper understanding of our CX-DaGAN,
we visualized some of the images selected by the Step A.
In Fig.9 the best and worst projected images are presented
according to (1) and (2). Therefore, the figure is divided into
four parts, one for each error metric. The two top rows depict
the projection of each class into the same category of the target
PCA subspaces. The first row presents original images from
source domain, while the second row shows the result of the
projections. Specifically, we show the images with the best (a
and c) and the worst (b and d) projection error for each class,
normal (left) and pneumonia (right). Note that the projected
image is visually more distorted when the error is larger than
when the projection error is smaller. On the other hand, the two
bottom rows correspond to the projection of the source images
on the target subspaces with opposite classes. In this case, the
error numbers are similar to those in the upper part due to the
remarkable similarity between all chest radiographs regardless
of their pathology. However, our proposed method for cross-
class projection involves, this time, selecting the source images
with the highest error projection (b and d) as shown in the pink
boxes.

2) Step B: The source samples selected in step A were
used together with the training target images (400 images)
to train the GAN-based image-to-image translation proposed
in Section II-B. New synthetic images are generated within
the target domain from the transformation of the previously
chosen source images. In such a way, the number of source
images feed the GAN network is equal to the number of output
synthetic images. Fig. 10 shows four random source images
selected by step A that entered the GAN, and in the row below,
their respective transformations to the target domain.

3) Step C: Synthetic images and the target samples were
used to train the Xception network with a particular proposed
fine-tuning strategy. Fig. 11 depicts some examples of the
classification results obtained when testing our method with
step C on 173 images of the target domain. The correct
predictions are presented with black labels, and erroneous
predictions are shown with a red label.

Fig. 9. Selected X-ray images from the source domain considering the
projection error when projected onto target subspaces obtained by PCA.
The selected images are highlighted in each case with pink color. The
first two rows depict the projection of each class into the same category
of the target PCA subspaces. The last two rows depict the projection of
the source images on the target subspaces with opposite classes.

Fig. 10. Input (source domain) and output (synthetic data) examples of
our GAN network.

IV. CONCLUSIONS

The main contribution of the proposed method is to take
advantage of information from an extensive labeled public
dataset to improve the classification accuracy of a small X-
ray dataset acquired in a different hospital. Specifically, the
main goal of the proposed approach is to select from a large
dataset the images that best fit the small target dataset in the
sense of their intra-class similarity and inter-class dissimilarity.
In addition, a classification improvement is achieved by gen-
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Fig. 11. Classification results of some chest X-ray images from the
test subset.Correctly classified samples are shown with black labels and
incorrect ones with red.

erating new images through a GAN network that follows the
target data distribution. This paper introduced the CX-DaGAN
algorithm, an original method to address the problem of chest
X-ray pneumonia diagnosis on a small target dataset. To
achieve this purpose, we propose to use information extracted
from a larger and publicly available chest X-ray source dataset.
Specifically, our proposed algorithm is a complete domain
adaptation workflow which consists of three stages. First, we
proposed a subspace-based domain adaptation method to select
images from the large dataset (source domain). We then used
the selected images and the train set of the small dataset (target
domain) to train our proposed GAN-based image-to-image
translation network. We finally used the synthetic images
generated from GAN, which follow the target domain dis-
tribution, and the training set of the target dataset to fine-tune
a pretrained CNN classification network to achieve the final
classification accuracy. During the experiments, we observed
that training on target data without performing our proposed
domain adaptation workflow led to an overall accuracy of
88.36%. However, when we used our proposed workflow to
augment the training set of target and carefully fine-tuning
the Xception network, we achieved an overall accuracy of
up to 97.78%. Future studies will consist in evaluating the
performance of this new domain adaptation method for the
classification of small datasets in other related medical tasks
and involving other medical imaging modalities. Furthermore,
it would be interesting to address the fundamental ideas behind
the CX-DaGAN algorithm to extend its scopes to multi-class
classification tasks. In this work, we considered as similarity

metric, rather the projection error using the ℓ2-norm than a
human medical inspection. We will also investigate in our
future studies the selection of the adequate images based
on expert radiologists’ decision, or using criteria specifically
designed for medical images.
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