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ABSTRACT

Compressive spectral imaging (CSI) acquires coded projections
of a spectral image by performing a modulation of the data cube fol-
lowed by a spectral-wise integration. To avoid the spectral image re-
construction procedure, this paper proposes a classification approach
that extracts features directly from multi-sensor CSI measurements.
Particularly, the proposed method obtains the features by consider-
ing the spectral information extracted from Hyperspectral CSI mea-
surements, and the local spatial information extracted by clustering
the Multispectral CSI measurements using a superpixel algorithm.
This approach is evaluated on Pavia University and Salinas Valley
datasets. Extensive simulations show that considering the local spa-
tial information boosts the overall accuracy up to 3% in comparison
with traditional approaches that only uses the spectral information.
Furthermore, the computation time of the approach that reconstructs,
fuses and classifies takes approximately 87.43 [s], while classify-
ing directly from multi-sensor compressive measurements takes only
0.74 [s], achieving similar classification results.

Index Terms— compressive spectral imaging, multi-sensor
measurements, spectral image classification, feature extraction, su-
perpixel algorithms.

1. INTRODUCTION

Spectral imaging senses 2D spatial information along multiple
wavelengths. Traditional sensing techniques require scanning all
the scene across multiple spectral bands to construct the three-
dimensional (3D) data cube [1]. Based on the acquired spec-
tral/spatial resolution, spectral imaging sensors can be categorized
in Hyperspectral (HS) and Multispectral (MS). Typically, HS de-
vices capture hundreds of spectral bands of the scene, however, its
spatial resolution is often lower compared to that obtained with an
MS sensor, which has a low spectral resolution [2]. In this sense,
fusion techniques provide a methodological framework for finding
a high spatial and spectral resolution image using the information
from both HS and MS images [3, 2]. After applying a fusion tech-
nique, the spectral signatures (a.k.a spectral pixels) are commonly
used as classification features for identifying and detecting different
materials within the high-resolution spectral data cube [4, 3, 5, 6, 7].

In general, spectral image classification is a very difficult task
due to the inherent data complexity, high storage requirements and
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computational costs. Therefore, a preprocessing step to reduce the
dimensions of the spectral imagery is often required [8, 9]. On
the other hand, compressive spectral imaging (CSI) has recently
emerged as a new spectral imaging acquisition approach which cap-
tures compressive 2D measurements of the entire data cube rather
than directly acquiring all the voxels, hence reducing the data dimen-
sionality [10, 11, 12, 13]. Under the context of CSI, two data fusion
algorithms have been recently proposed [14, 15]. In particular, these
methods reconstruct a high spatial and spectral resolution image
from multi-sensor compressive measurements. Then, an intuitive
approach of spectral image classification from multi-sensor com-
pressive measurements would involve two tasks: the reconstruction
of the fused image from the HS and MS compressive measure-
ments, and finally, the classification procedure itself. However, this
approach implies expensive computational costs and further, the
classification accuracy might be degraded due to multiple factors
[2, 10].

Although most of the CSI literature has focused on improv-
ing the speed and accuracy of the spectral image reconstruction
[10, 16, 17, 18], the image recovery stage, in general, is not actually
necessary for performing many signal processing tasks [19, 20, 21].
Indeed, the aim of this work is to extract features and perform the
spectral image classification directly from multi-sensor compressive
measurements without requiring to recover the whole data cube,
thus, the CSI reconstruction phase is completely avoided. After
acquiring the HS and MS compressive measurements, the pro-
posed method perform a rearrangement and extrapolation procedure
from CSI HS measures in order to extract the spectral features.
Consecutively, the CSI MS measurements are rearranged before
applying a superpixel algorithm [22] in order to obtain the spatial
features. Specifically, using this segmentation technique, the pro-
posed method groups pixels with similar spectral characteristics
within a nearby neighborhood, incorporating spatial information
and hence boosting the classification performance. Finally, the HS
and MS extracted features are concatenated before being evaluated
in a SVM classifier with a polynomial kernel.

2. PROPOSED METHODOLOGY

2.1. Compressive measurements acquisition

In this work, the 3D-CASSI sensing approach is adopted [13]. In
general, denote F as the spatio-spectral data cube, with M × N
spatial dimensions, L spectral bands and entries denoted as Fm,n,k,
where m and n index the spatial coordinates, and k determines the
k-th spectral band. As shown in Fig. 1 (a), the 3D-CASSI sensing
scheme first modulates the voxels of the spectral scene using a 3D
coded aperture Cs, whose entries are indexed as Csm,n,k. Then, the
coded spectral scene is integrated in the focal plane array (FPA) de-
tector, along the spectral axis. In CSI it is possible to acquire S � L
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(a) 3D-CASSI sensing procedure.
. . .

(b) Rearrangement of the matrix Ŷ such that the s-th row of Y contains the
compressive measurements acquired with the s-th coding pattern φs.

Fig. 1: Acquisition and rearrangement of CSI measurements.

measurement shots, each one employing a different coded aperture,
such that different measurements of the spectral data cube are ac-
quired. Therefore, the output of the sensing process, at the (m,n)-th
detector pixel and a specific snapshot s, can be expressed as

Ŷ sm,n =

L−1∑
k=0

Fm,n,kCsm,n,k. (1)

Note that for each spatial location of Cs, it is assigned a coding
pattern (optical filter) φs ∈ RL, with entries (φs)k ∈ {0, 1}, that
modulates a spectral pixel in that particular position before being
integrated at the FPA detector. Further, observe that there is a finite
number of optical filters randomly distributed in Cs. In this work,
as shown in Fig. 1 (a), the 3D coded apertures are built with non-
overlapping optical filters which cover all the spectrum.

The set of compressive measurements from (1) can be arranged
in a matrix Ŷ with dimensions S × (MN), where each column
contains the compressive measurements associated to a particular
spectral pixel. Note that, each row of Ŷ contains the compressive
measurements acquired by the s-th snapshot. However, column vec-
tors of Ŷ contain the spectral pixel measurements in unordered form
since, in a particular snapshot, the spectral pixels are encoded using
distinct coding patterns. Then, the matrix Ŷ is not convenient for
classification as its structure makes difficult to discriminate among
compressive measurements. Denoting P as the number of different
coding patterns, if the number of measurements shots S equals P ,
the entries of Ŷ can be rearranged to form a new matrix Y, such
that each row contains the compressed information acquired with a
specific coding pattern φs. Note that this rearrangement is only pos-
sible when S = P since in this case it can be guaranteed that, at
a specific snapshot, one pixel is encoded only once by a different
coding pattern and, at the end of the sensing procedure, all pixels
are encoded by the whole set of S coding patterns. Indeed, there are
few optical filters in practice hence the case S = P will efficiently
extract the information from the underlying data cube. Formally, the
rearrangement can be expressed as

Ys,j = Ŷs′,j if Ŷs′,j = (φs)T fj ∀s′,

for s, s′ = 0, · · · , S − 1, where fj ∈ RL denotes the j-th spectral
signature for j = 0, · · · ,MN − 1. This rearrangement, depicted in
Fig. 1 (b), preserves the structure of the underlying data improving

the classification results. Alternatively, defining the matrix of S cod-
ing patterns as Φ =

[
φ0,φ1, · · ·φS−1

]T
, the problem of acquiring

and rearranging the measurements Ŷ can be succinctly expressed as
follows

Y = ΦF, (2)

where F ∈ RL×(MN) is the spectral image in matrix form, and
Φ ∈ RS×L can be viewed as the projection matrix. In this work the
MS (Fm) and HS (Fh) images can be modeled from F as follows:

Fm = DmF (3)
Fh = FDh, (4)

where Dm ∈ RLm×L and Dh ∈ RMN×MhNh are the spectral and
spatial downsampling matrices, with downsampling factor q and p,
respectively.

2.2. Features Extraction

2.2.1. HS feature extraction

Following the CSI acquisition model described in Section 2.1, the
compressive measurements acquired by the CSI hyperspectral sensor
can be succinctly expressed as

Yh = ΦhFh, (5)

where Φh ∈ RSh×L is the coding pattern matrix, Yh ∈ RSh×(MhNh)

contains the compressive measurements in an ordered form, with Sh
denoting the number of measurement shots and Mh, Nh the spatial
dimensions of the image acquired by the HS CSI sensor.

Although the matrix Yh can be used as a feature matrix to per-
form classification, the goal of this work is to label a high spectral
and spatial resolution image taking into account the rich spectral in-
formation embedded in Yh. Then, a spatial extrapolation is per-
formed by replicating the columns of Yh, where the replicated pix-
els are located to the corresponding high-spatial resolution positions.
The extrapolation process can be formulated as follows

ωjh = Yh

(
b j

′
p
c+M

p

[
b j′
M
c+b j′

Mp
c
])
, (6)

where ωjh is the j-th column of the HS classification features Ωh;
Yh

(j′) is the j′-th column of the ordered compressive measurements
Yh; and bxc returns the greatest integer less or equal than x.

2.2.2. MS feature extraction

Similarly, the compressive MS measurements are acquired as

Ym = ΦmFm, (7)

where Φm ∈ RSm×L is the coding pattern matrix, whose rows con-
tain the coding patterns of the optical filters used for acquiring the
MS compressive measurements. To incorporate the spatial neighbor-
hood information, this work uses a superpixel technique. Superpixel
algorithms group pixels into perceptually meaningful atomic regions
or segments. This captures image redundancy, provide a convenient
primitive from which to compute image features, and greatly reduce
the complexity of subsequent image processing tasks. In this work,
the segmented image is created by applying the efficient simple lin-
ear iterative clustering (SLIC) algorithm [22] on the MS compressive
measurements, which are first rearranged back to a M × N × Sm
image. To reduce the computational cost, before the segmentation,
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Fig. 2: Workflow of the proposed CSI Spectral-Spatial classification
approach.

principal component analysis is applied on the MS compressive mea-
surements and the three principal components are used as the base
image for the segmentation. Note that the PCA analysis is only nec-
essary if the number of acquired shots Sm is greater than 3.

Once the segmentation map has been created, it can be utilized
with the MS compressive measurements to extract the classification
features. Specifically, denote pe as the vector containing the indexes
of all pixels belonging to the superpixel e, the columns of MS feature
matrix Ωm are created as follows

ωpe

m =

∑ne−1
l=0 Ym

(pe)l

ne
, for e = 0, · · · , Nseg, (8)

where Nseg is the number of segments generated by the superpixel
algorithm, (pe)l denotes the l-th entry of the pe vector and ωpe

m

represents the columns in Ωm indexed by the vector pe. Note that
Eq. (8) simply replace all pixels in a segment e by the mean pixel.
This procedure incorporates the spatial neighboring information of
the superpixel in the classification method.

Finally, the feature matrices obtained from both MS and HS im-
ages (Ωm,Ωh) are stacked in order to build the feature matrix of the
high spatial and spectral resolution image whose columns shall be
the input samples of a support vector machines (SVM) classifier. In
other words, since the Ωm and Ωh have MN columns, the feature
matrix is built as Ω =

[
ΩT

h ,Ω
T
m

]T
. In this work, the compression

ratio is given by ρ = Sh+Sm

L
. The flowchart of the proposed clas-

sification approach from multi-sensor compressive measurements is
shown in Fig. 2.

3. SIMULATIONS AND RESULTS

The proposed classification method 1 was first evaluated on the Pavia
University dataset, acquired by the Reflective Optics System Imag-
ing Spectrometer (ROSIS-03) sensor [23]. This spectral image con-
sists of 610×340 pixels and 103 spectral bands. In this work, a sub-
set of this spectral image with dimensions 256× 256× 96 was used
in order to evaluate various classification approaches. Figure 3 (a)
shows the ground-truth map of the Pavia University dataset, where
each class corresponds to a distinct material in an urban cover. For
all the experiments, a SVM classifier is trained using a polynomial
kernel and 10% of the samples. In addition, the compression ratio of
the acquired CSI measurements is set to ρ = 25%.

1The MATLAB code along with some simulations can be found in
https://rebrand.ly/icip2019.
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Fig. 3: Classification maps on the Pavia University data set. (a)
Ground Truth. (b) Original Image, (c) Reconstruction-Fusion, (d)
ACC, (e) Proposed-Noisy, (f) Proposed-Noiseless.
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Fig. 4: (a) The overall accuracy of the proposed classification
method versus the number of the superpixel segments and (b) the
overall accuracy against the SNR of the compressive measurements.

In the first experiment, the number of superpixels is varied in
order to analyze the impact of the clustering technique in the overall
accuracy (OA). Specifically, Fig. 4 (a) shows the OA versus number
of segments (Nseg) classification results on the University of Pavia
image. As it can be observed, as the number of desired segments in-
creases the overall accuracy decays exponentially, as depicted with
the fitted curve in red. In addition, note that, in general, the proposed
method outperforms the spectral classification over the original im-
age when usingNseg ≤ 1600. Indeed, it can be seen from the figure
that the incorporation of spatial neighboring information boost the
classification accuracy up to 3% in OA, when the chosen number of
superpixels is approximately the number of classes within the spec-
tral scene. Therefore, the number of segments is fixed to Nseg = 10
for the subsequent experiments on the Pavia University dataset.

It is important to note that the measurements described by Eq.
(2), in general, are noise free. However, in real CSI architecture, the
compressive measurements are contaminated with noise due to the
physical limitation of the sensor and imperfections of the acquisition
system. Therefore, Eq. (2) should be rewritten as Y = ΦF + Σ,
where Σ ∼ N(0, σ2) represents the noise of the system. Figure 4
(b) shows the overall accuracy results of the proposed classification
method versus the SNR of compressive measurements. For com-
parison purposes, the accuracy results of the Reconstruction-Fusion
method is included in Fig. 4 (b). As can be seen in this figure, the
proposed method outperforms the other method for the test interval.

Figures 3 (b), (c), (e) and (f) show the classification maps ob-
tained when the SVM is applied on the original spectral image
(Original Image), a reconstructed and fused spectral image from
compressive measurements (Reconstruction-Fusion), the extracted
features (Ω) from noisy compressive measurements (Proposed-



Table 1: Performance of the various classification approaches on the
Pavia University dataset.

Class Original Recontruction- ACC Proposed- Proposed-
image Fusion Framework Noisy Noiseless

Asphalt 86.80± 2.03 84.62± 1.05 91.20± 1.21 95.05± 4.62 98.63± 0.70
Meadows 99.07± 0.02 99.23± 0.22 95.78± 0.14 98.95± 0.17 99.77± 0.02

Gravel 82.39± 1.35 80.03± 6.67 79.62± 0.31 78.04± 4.58 99.67± 0.16
Trees 88.61± 2.41 91.55± 2.62 92.06± 0.27 86.86± 3.13 93.35± 0.07

Bare-Soil 61.96± 5.89 72.45± 5.89 85.57± 0.98 88.98± 6.46 98.25± 2.47
Bitumen 93.29± 0.97 90.82± 2.51 77.11± 0.16 93.70± 3.10 92.19± 0.97

Self-Block Bricks 90.40± 0.20 85.14± 3.19 83.16± 0.24 83.05± 1.19 97.58± 1.03
Shadows 100.00± 0.00 99.89± 0.15 98.47± 0.66 98.42± 0.74 98.74± 0.00

OA (%) 94.51± 0.35 94.05± 0.72 90.88± 0.43 94.55± 0.60 98.90± 0.03
AA (%) 87.81± 1.26 87.97± 0.01 87.87± 1.05 90.38± 0.86 97.27± 0.40
κ 0.91± 0.0062 0.90± 0.0119 0.88± 0.0147 0.91± 0.0105 0.98± 0.0005

Time (s) 1.17± 0.007 87.43± 1.77 24.97± 2.35 0.66± 0.050 0.74± 0.037

Noisy), and the extracted features from noiseless compressive
measurements (Proposed-Noiseless), respectively. In addition, the
proposed method was compared with the Adaptive Compressed
Classification (ACC) framework [24], using SVM, in Fig. 3 (d). For
the Reconstruction-Fusion classification approach, we implement
the spectral image reconstruction method developed in [16] and the
coupled nonnegative matrix factorization (CNMF) fusion technique
[25]. For the Proposed-Noisy approach, the proposed method is
applied to noisy compressive measurements with SNR = 25 dB.

In order to further validate the performance of the proposed ap-
proach, quantitative results are presented for the selected spectral
scene in Table 1. All the presented results are the average of 10 ex-
periments, each with different realizations of Φh and Φm coding
patterns, and the best value of each row is shown in bold font. Fur-
thermore, Table 1 shows the numerical results for each of the eight
land-cover classes (producer’s accuracy), overall accuracy (OA), av-
erage accuracy (AA), Kappa (κ) coefficients [26] and time. All the
results, except the Kappa coefficients, are given in percentage.

From the Table 1, it can be clearly observed that the proposed
classification approach provide comparable results to applying the
method directly on the original and reconstructed spectral data cube.
In addition, performing the classification directly on the CSI mea-
surements is significantly faster than performing all the processing
in the complete and the reconstructed spectral data. As observed,
the results show that when no noise is assumed, the achieved classi-
fication accuracy outperforms the results obtained with the full spec-
tral data cube. As reported in some works, random projections are
not sensitive to impulse noise thus can be used as a noise reduction
method [27]. In other words, the achieved results when using noise-
free compressive measurements are due to the random projection,
described in Eq. (2), removes noise from the acquired measure-
ments. Finally, as clearly observed from Table 1, ACC is outper-
formed by the proposed method in both, noisy and noiseless case.

For the sake of completeness, we evaluate the proposed method
on the Salinas dataset, captured by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) [23]. This image has dimensions
of 512 × 217 pixels and 204 spectral band. In this work, a subset
of 217 × 217 × 192 is used to evaluate the proposed classification
method. Fig. 5(a) shows an RGB composite of the Salinas Valley
spectral image and Fig. 5(b) shows the ground truth map of eight
land-cover classes corresponding to different kinds of crops. More-
over, Fig. 5(c)-(f) show the classification maps obtained from the
original image, the Reconstruction-Fusion approach, the proposed
method using noisy compressive measurements (Proposed-Noisy),
and the proposed method using noiseless compressive measurements
(Proposed-Noiseless), respectively. As can be observed in these
figures, the classification map generated by the proposed method
over noiseless compressive measurements exhibits a superior per-

(a) (b) (c)

(d) (e) (f)

Fig. 5: Salinas Valley dataset: (a) RGB composite of the spectral
image, (b) Ground Truth. (c) Original Image, (d) Reconstruction-
Fusion, (e) Proposed-Noisy, (f) Proposed-Noiseless.
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Fig. 6: (a) The overall accuracy on the Salinas Valley dataset versus
the compression ratio and (b) the overall accuracy versus the rate of
training samples.

formance compared with those yielded by the other approaches.
Figure 6 (a) shows the overall accuracy versus the compression

ratio for the various classification approaches. Each point of these
curves is obtaining by averaging 20 realizations of the respective ex-
periment, and for each trial, a new set of colored coded apertures
is built and a random set of training samples are selected. Further-
more, the rate of training samples is set to 10% and the number of
super-pixels is fixed to Nseg = 10. As can be seen in this figure, the
proposed classification approach using noiseless measurements has
a remarkable performance in comparison with the other methods.
Finally, Fig. 6 (b) shows the overall accuracy as the rate of training
samples increases. As can be observed in this figure, the proposed
method from noiseless measurements outperforms the other classi-
fication approaches for the entire evaluation interval, achieving an
accuracy gain of at least 3%.

4. CONCLUSIONS

This work presented a spectral-spatial image classification approach,
which perform all the processing tasks directly on multi-sensor com-
pressive measurements. The proposed method performs a superpixel
algorithm with the multispectral CSI measures in order to incorpo-
rate spatial neighboring information in the classification features. In
addition, spectral and some spatial features are extracted from the
hyperspectral CSI measures, using an extrapolation procedure. The
proposed approach was validated trough some preliminary experi-
ments. In general, the results show that performing the classifica-
tion directly on the compressive measurements provides similar ac-
curacy results, in a lesser time, compared with those provided by
performing the classification on the original 3D spectral image and
the reconstructed image pixels. Particularly, a maximum difference
of approximately 4% in terms of OA was observed when compar-
ing the classification results obtained using the original image with
those achieved using the CSI multi-sensor measurements acquired
with the 3D-CASSI sensing scheme.
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