
Efficient subspace clustering of hyperspectral images
using similarity-constrained sampling

Jhon Lopez ,* Carlos Hinojosa , and Henry Arguello
Universidad Industrial de Santander, Department of Computer Science, Bucaramanga, Colombia

Abstract. The unsupervised classification of hyperspectral images (HSIs) draws attention in the
remote sensing community due to its inherent complexity and the lack of labeled data. Among
unsupervised methods, sparse subspace clustering (SSC) achieves high clustering accuracy by
constructing a sparse affinity matrix. However, SSC has limitations when clustering HSI images
due to the number of spectral pixels. Specifically, the temporal complexity grows at a cubic ratio
of the size of the data, making it inefficient for addressing HSI subspace clustering. We propose
an efficient SSC-based method that significantly reduces the temporal and spatial computational
complexity by splitting the HSI clustering task using similarity-constrained sampling. Our sim-
ilarity-constrained sampling strategy considers both edge and superpixel information of the
HSI to boost the clustering performance. This sampling strategy enables an intelligent selection
of spectral signatures, and then, we split the clustering problem into multiples threads.
Experimental results on widely used HSI datasets show that the efficiency of the proposed
method outperforms baseline methods by up to 30% in overall accuracy and up to six times
in computing time. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10
.1117/1.JRS.15.036507]
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1 Introduction

Hyperspectral imaging devices capture spectral information from a scene by obtaining a large
amount of spatial information at different electromagnetic radiation frequencies. Hyperspectral
images (HSIs) are considered three-dimensional (3D) datasets or data cubes with two-dimen-
sions (2D) in the space domain ðx; yÞ and one in the wavelength domain λ. Since different
materials reflect electromagnetic energy differently at specific wavelengths,1 the knowledge of
spectral content in various spatial locations from one scene can be a valuable tool for detecting,
identifying, and classifying of materials and objects with complex compositions.2 In particular,
each pixel in HSI is represented by a vector with values that correspond to the intensity in differ-
ent spectral bands and is known as a spectral signature or spectral pixel, which can be used to
distinguish materials in a scene. The classification of spectral images is an essential task for
many practical applications, such as precision in agriculture,3 monitoring, and managing the
environment,4 security, and defense.5

Clustering is a common unsupervised classification task in which a set of objects is clustered,
such that objects in the same group (also known as cluster) are more similar to each other than
those in other groups. For years, many clustering algorithms have been proposed, and they mainly
differ in how they define clusters and how they find them efficiently. For instance, spectral cluster-
ing (SC)6 is a popular and highly effective algorithm that finds the membership of the data points to
a cluster using the spectrum of a symmetric non-negative affinity matrix with inputs that measure
the similarities between the connected points. Therefore, the essential step in SC-based methods is
to construct a similarity graph.6 The sparse subspace clustering (SSC)7 is a popular and accurate
algorithm that proposes capturing the general geometric relationship between all data points by
expressing each data point as a linear combination of the other points, from all other points, and
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then the solution set is restricted to being scattered or sparse, minimizing the l1 norm of the matrix
of representation coefficients. Using the sparse representation matrix, the similarity graph is con-
structed, from which the segmentation of the data is obtained using SC.7,8

Considering that spectral pixels with similar spectra have a high probability of belonging to
the same low-dimensional structure, some SSC-based algorithms have been successfully used
for HSI clustering.9–14 In general, such approaches take advantage of the spatial-contextual infor-
mation of the HSI and incorporate a regularization constraint in the SSC optimization model.
However, their main limitation is the overall computational burden. For instance, given an HSI
with M rows, N columns, and L spectral bands, SSC needs to compute the n × n sparse coef-
ficient matrix, where n ¼ NM spectral pixels, with a computational complexity of OðLn3Þ.10
Recently, different works have proposed more efficient approaches to addressing the scalability
issue of SSC.15–20 For instance, the authors in Ref. 15 address the subspace clustering problem by
randomly dividing the dataset into two subsets to alleviate the SSC computational burden.
Although such methods achieve a good performance when clustering large datasets, they do
not fully exploit the information and spectral–spatial dependence of HSIs.

1.1 Paper Contribution

Considering that an efficient and careful selection of data subsets could speed up the unsuper-
vised learning process, and the spatial-contextual information of the HSI could increase the clus-
tering accuracy, this paper proposes an efficient subspace clustering algorithm for HSI using
similarity-constrained sampling. Specifically, the proposed approach first clusters the spectral
pixels into high spatially correlated blocks using edge and superpixel information; then, it sep-
arates the data points within each segment into two subsets. Next, our proposed method employs
SSC on the first subset to learn the underlying subspace structure. Finally, the spectral pixels
belonging to the second subset are projected on the learned structure, and their cluster member-
ship is computed considering the smallest projection error. The obtained results show that an
efficient and careful selection of data subsets speeds up the unsupervised learning process while
achieving high-clustering performance in terms of overall accuracy (OA).

We organize the paper as follows: in Sec. 2, we briefly review some related works that rely on
SSC and focus on improving the scalability limitations of SSC or exploiting the spatial information
to improve HSI clustering. In Sec. 3, we develop the proposed method and its complexity analysis.
In Sec. 4, we present the experimental results, and Sec. 5 contains the conclusions of this work.

2 Related Work

In the literature, the scalability issue of SSC and its use in performing land cover segmentation on
spectral images have been studied separately. In this section, we review some related works from
these two points of view. The underlying idea behind the SSC algorithm is the self-expressive-
ness property of the data, which states that it is possible to efficiently represent each data point in
a union of subspaces by a linear or affine combination of other points. In general, such a rep-
resentation is not unique because there are infinitely many ways to express a data point as a
combination of other points. The main observation is that a sparse representation of a data point
ideally corresponds to a combination of a few points from its own subspace. This motivates
solving a global sparse optimization problem, the solution of which is used in an SC8,21 frame-
work to infer the clustering of data.

Specifically, let us consider a given collection of n data points D ¼ fd1; · · · ; dng that lie in
the union of k linear or affine subspaces. SSC expresses each data point dj as a linear combi-
nation of all other points in D, i.e., dj ¼

P
i≠jΓijdi, where Γij is nonzero only if di and dj are

from the same subspace, for ði; jÞ ∈ f1; · · · ; ng. In this formulation, the matrix of the data D is a
self-expressive dictionary in which each point can be written as a linear combination of other
points. Further, the representations fΓijg are called subspace-preserving; as shown in Ref. 8, if
the subspaces are low-dimensional and independent, subspace-preserving representation can be
obtained using l1 minimization. Then, assuming that Γj is sparse, SSC solves the following
optimization problem:
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EQ-TARGET;temp:intralink-;e001;116;735 min
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τ
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Γijdi
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2

2

; (1)

where τ > 0 and Γj ¼ ½Γ1j; · · · ;Γnj�T encodes information about membership of dj to the sub-
spaces. Subsequently, an affinity matrix between any pair of points di and dj is defined as
Aij ¼ jΓijj þ jΓjij. Finally, the clustering result is obtained by applying SC8,21 to the
Laplacian matrix L induced by the affinity matrix A, where L is given as

EQ-TARGET;temp:intralink-;e002;116;645L ¼ I − β−1∕2Aβ−1∕2; (2)

where β ¼∈ Rn×ndiagfbig with bi ¼
P

n
j¼1 Aij and I ∈ Rn×n is an identity matrix. Although

the representation produced by SSC is guaranteed to be subspace preserving, the affinity
matrix may lack connectedness,22 i.e., the data points from the same subspace may not form
a connected component of the affinity graph due to the sparseness of the connections, causing
oversegmentation.

2.1 Fast and Scalable Subspace Clustering Methods

In the state-of-art, different works have proposed efficient approaches to address the scalability
issue of SSC. For instance, in Ref. 20, the authors proposed the scalable and robust SSC (SR-
SSC) algorithm, which selects a few sets of anchor points using a randomized hierarchical clus-
tering method. Then, within each set of anchor points, it solves the LASSO18 problem for each
data point, allowing only anchor points to have nonzero weights, thus reducing the number of
variables drastically. Another scalable algorithm is the oracle guided elastic net (EnSC),16 which
studies the geometry of the elastic net regularizer (a mixture of the l1 and l2 norms) and uses it
to derive a probably correct and scalable active set method for finding the optimal coefficients. In
anther work entitled scalable exemplar-based subspace clustering for class-imbalanced data
(ESC-FFS),19 the authors looked for a subset of data that best represents all of the data points
measured by the l1 norm of the representation coefficients. In addition, in Ref. 17, the authors
proposed the orthogonal matching pursuit (OMP) algorithm to solve the SSC optimization prob-
lem, which we refer to as SSC-OMP throughout the paper. Finally, in Ref. 15, the authors pro-
posed the scalable SSC (SSSC) to address the subspace clustering problem by randomly dividing
the dataset into two subsets. Then, the SSC is applied to the first subset to learn the underlying
subspace structure of the data. Such knowledge about the data subspaces is used to cluster the
remaining data. In this regard, each point in the second subspace is projected onto each of the
previously computed subspaces. Then, the difference of each point in a subspace is computed
and assigned to the subspace in which it obtained the minimal residual. Despite SSSC achieving
good performance when clustering large data, this approach relies on random initialization to
separate the data into two subsets and sacrifices clustering accuracy for computational efficiency.
In general, the aforementioned scalable methods do not fully exploit the structure of HSI or take
advantage of spectral–spatial dependency of the data when clustering HSI imagery.

2.2 SSC-Based Methods for HSI

Some SSC-based methods that take advantage of the neighboring spatial information but still
present the scalability issue of SSC have been proposed for HSI. Under the context of HSIs, the
M × N × L 3D image data cube can be rearranged into a 2D matrix D ∈ Rn×L to apply the SSC
algorithm, where n ¼ MN. Taking into account that the spectral pixels belonging to the same
land cover material are arranged in common regions, different works9–13,23 aim at obtaining a
piecewise smooth sparse coefficient matrix to incorporate such contextual dependence. For in-
stance, the authors in Ref. 9 proposed the 3DS-SSC method, which helps to guarantee spatial
smoothness and reduce the representation bias by adding a 3D regularization term in the SSC
optimization problem, which enforces a local averaging constraint on the sparse coefficient
matrix. Another approach proposed in Ref. 12 takes into consideration the SSC model to obtain
a more accurate coefficient matrix, which is used to build the adjacent matrix. The authors in
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Ref. 12 also built a weight matrix W that takes into account spatial information to regularize
connections in the Γ coefficient matrix, shown in Eq. (1). On the other hand, in Ref. 23, the
authors proposed a similar approach to the previously mentioned work,12 in which they built a
more precise adjacent matrix using the max-pooling operation. In particular, the authors in
Ref. 23 proposed mapping the feature points into a much higher dimensional kernel space
to extend the linear SSC model to nonlinear manifolds, which can better fit the complex non-
linear structure of HSIs. With the help of the kernel sparse representation, a more accurate rep-
resentation coefficient matrix can be obtained. A spatial max-pooling operation is utilized for the
representation coefficients to generate more discriminant features by integrating the spatial-
contextual information, which is essential for the accurate modeling of HSIs.

3 Fast Similarity-Constrained Sampling Sparse Subspace Clustering

Most subspace clustering methods have problems assigning a point to a subspace when they are
close to the intersection of two or more subspaces.8 Considering the spatial information, we
propose using a sampling restricted by spatial similarity to separate data that are possibly close
to the intersection of multiple subspaces. To do this, the HSI is initially divided into high spa-
tially correlated segments containing points that possibly belong to the intersection of subspaces.
Then, efficient sampling is applied to each segment to select in-sample and out-sample points.
Therefore, SSC will be applied individually at in-sample points of each segment. The assignment
of the out-sample points to the clusters is carried out using the minimum residual obtained by
projecting each point on already clustered in-sample points. An overview of the proposed
method, named fast similarity-constrained sampling sparse subspace clustering (F4SC), is
shown in Fig. 1.

3.1 Edge Detection and Superpixels

Commonly, SSC is used to cluster HSI by only taking advantage of the spectral information.
However, these algorithms do not take into account the spatial relationship among pixels of the
HSI when deciding the class to which each point belongs. In contrast, in this work, we rely on
edge detection and superpixels to consider the spatial information present in the HSI since, with
the combination of these two methods, the generated segments are better adapted to the structure

Fig. 1 F4SC. Initially, we obtain a 2D matrix from the HSI by averaging all of the spectral bands.
Then, we extract spatial similarities by fusing the edge information and superpixel. Next, using the
spectral information of the HSI and the extracted spatial information, we perform similarity-con-
strained sampling to obtain segments and obtain two subsets from each of them: X, Y. Finally, we
perform simultaneously subspace clustering on X and use the learned subspaces structure to
clustering Y in the threads configured in the proposed method execution environment.
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of the possible subspaces present in the HSI, as shown in Fig. 2. Note that, in Fig. 2(c), the
structure of the segments tends to be regular geometric figures, and a possible structure of the
possible clusters present in the scene is not obtained. In contrast, in Fig. 2(b), it is achieved.

Edge detection in grayscale images has been thoroughly studied, and it is well established24

due to its use in different areas, such as computer vision. However, for multichannel images, such
as HSI, this topic is less developed since defining borders for these images is a challenge due to
the high dimensionality of the data. Therefore, this work uses a practical approach that consists
of adding all of the spectral bands of an HSI and obtaining a 2D image as

EQ-TARGET;temp:intralink-;e003;116;485H 0ði; jÞ ¼ 1

L

XL
k¼1

Hði; j; kÞ ∀ ði; jÞ ∈ ðM;NÞ: (3)

It is worth mentioning that there are other methods of obtaining a 2D matrix from the HSI,
such as principal component analysis25 (PCA) or random projection.26 Once the 2D image is
obtained, the Sobel edge detection operator Ω27 is applied to obtain the edge image as

EQ-TARGET;temp:intralink-;e004;116;400B ¼ ΩðH 0Þ ∈ f0; 1gM×N: (4)

Considering the edge information, we also apply the SLIC28 algorithm to obtain a segmen-
tation of neighboring pixels. In the first row of Fig. 1, we represent the aforementioned pro-
cedure, which allows us to distinguish the points present at the intersection of subspaces. It
is important to note that, in this step, we only extract the spatial information from the HSI using
edge detection and a superpixel algorithm, as shown in Fig. 3, where the extraction of the spatial
information of the points inside and outside the mask of a certain segment is shown. Specifically,
we form the mask for each segment by taking pixels around its edge. In this sense, the mask
allows us to define a region limit of each segment. We then refer to “points outside the mask” to
those points within the segment edge and to “points inside the mask” to those points belonging to
the segment but outside its edge. In the following section, we use the information given by these
masks to perform a similarity-constrained sampling of the spectral signatures before subspace
clustering.

Fig. 2 (a) 2D matrix obtained from the HSI. (b) Result of edge detection by averaging all HSI
spectral bands and then applying superpixels. (c) Averaging all HSI spectral bands and calculate
superpixels.

Fig. 3 Point selection inside and outside the mask.
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3.2 Similarity-Constrained Sampling

The superpixel map is represented as an image S ∈ RM×N , which is calculated on the image B.
Using the information contained in S, the proposed method performs a similarity-constrained
sampling within each segment considering that the pixels of the superpixels maintain a high
spatial correlation, i.e., the correlation is greater between the points near the centroid and
decreases at the boundaries of the segment (superpixel). Specifically, our method first calculates
a mask for each segment e ¼ 1; · · · ; Nv by taking pixels around the border to improve the sep-
aration, where Nv is the total amount of segments. We denote we ∈ Rue as the vector of size ue
containing the indices of all pixels belonging to the superpixel e but lying outside the mask, see
Fig. 3. Similarly, we denoteme ∈ Rne as the vector of size ne containing the indices of all pixels
belonging to the superpixel e that lie within the mask. Then, we perform the sampling on the HSI
data for each segment e as follows:

EQ-TARGET;temp:intralink-;e005;116;584

Xe ¼ fHp∶p ∈ weg ∈ RL×ue

Ye ¼ fHp∶p ∈ meg ∈ RL×ne ; (5)

where Hp ∈ RL denotes the spectral pixel of H given by the spatial position index p. Through
the paper, we refer to in-sample points (Xe) as those spectral pixels from e that lie outside the
mask and out-of-sample points (Ye) as those spectral pixels from e that only lie within the border
mask. For ease of notation, we drop the subscript e in the Xe and Ye matrices; nevertheless, note
that all of the following operations are performed on each segment e.

3.3 Subspace Clustering Approach

Once the masks are defined, our method learns the underlying subspace structure given by the in-
sample points X. In particular, SSC solves the following optimization problem:

EQ-TARGET;temp:intralink-;e006;116;415

min
Γ;Z

kΓk1 þ
λZ
2
kZk2F

s:t: X ¼ XΓþ Z; diagðΓÞ ¼ 0; (6)

where Γ ∈ RL×ue is the sparse representation of the data,X ∈ RL×ue are the spectral signatures of
the HSI, Z denotes reconstruction errors for limited rendering ability, and λZ corresponds to a
regularization parameter. Once the sparse representation matrix Γ is obtained, SSC constructs the
similarity graph by solving A ¼ jΓjT þ jΓj and applies SC.6 We solve the optimization problem
in Eq. (6) using the alternating direction method of multipliers described in Ref. 29.

3.4 Minimal Residual

After learning the underlying subspace structure of X, we use such knowledge to cluster the out-
of-sample points Y. Specifically, each point belonging to Y is projected on each of the computed
subspaces from X. In this work, the sparse representation of Y over X is computed and each yi is
assigned to the nearest subspace on sparse representation-based classification.30 Then, for each
out-of-sample data point yi, the following optimization problem is solved:

EQ-TARGET;temp:intralink-;e007;116;201min
ci

kyi − Xcik22 þ γkcik22; (7)

where γ > 0 is the tolerance error and yi denotes an out-of-sample point. Once the optimal ci is
obtained, yi is assigned to the nearest subspace by solving

EQ-TARGET;temp:intralink-;e008;116;139fðyiÞ ¼ argmin
j

fkyi − XδjðciÞk2g; (8)

where fðyiÞ denotes the assignment of yi and the nonzero entries of δjðciÞ are the elements in ci
associated with the j’th subspace.15,30 The term δ is used to avoid overfitting.
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In addition to Fig. 1, all of the steps of F4SC are also shown in Algorithm 1. In lines 1 to 5, we
show how we extract the spatial information of the HSI and thus do the similarity-restricted
sampling. Later, in lines 7 to 10, we obtain the spectral signatures for the in-sample and
out-sample points for each segment. If the number of clusters present in a certain segment
is unknown, these are estimated in line 13. Finally, in line 14, we perform the allocation of
clusters for each segment.

3.5 Complexity Analysis

The computational complexity of the proposed method Algorithm 1 is OðNvt1Lψ3Þ þ
OðNvt2ψk2i Þ þOðNvnψ2Þ þOð2nÞ, where ψ is the number of in-sample points that belong
to a segment. Notice that, to compute the computational complexity, we assume that the value
of ψ is the same for all segments. However, this value could change in practice and depends on
the size of the segments. Table 1 details the complexity of each step on the proposed algorithm.
Using the big O notation properties, the computational complexity of our method can be

Algorithm 1 F4SC algorithm with input parameters → H, Nv , k

Result: Assigning clusters of H

1 H�←
PL

i¼1 H½∶; ∶; i�

2 B←ΩðH�Þ

3 Sp← algorithmSlic(B, Nv)

4 Bw←calculateMaskðSpÞ

5 ½IDX; IDY�←getIndexðBwÞ

6 for i←1 to Nv do

7 ½idxx; idxy�←IDX½i �

8 ½idyx; idyy�←IDY½i �

9 X←H½idxx; idxy; ∶�

10 Y←H½idyx; idyy; ∶�

11 k i←k½i �

12 if ki ¼ 0 then

13 k i←est imateNumberClustersðX Þ

14 GðiÞ←
�
R←SSCðX; k i Þ
minimalResidualðX;Y;RÞ

Table 1 Complexity of the proposed algorithm, where t1 and t2 are the iterations required to solve
the optimization problem shown in Eq. (6).

Term Description

OðNv t1Lψ3Þ Construction of the similarity graph

OðNv t2ψk2
i Þ SC6

OðNvnψ2Þ Projection of clustered points within the sample

OðNt Þ SLIC

OðNt Þ Edge detection
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summarized as OðNvt1Lψ3Þ. Since our method uses SSC for assigning clusters at points in-
sample of each segment, our computational complexity remains cubic, but as ψ ≪ n our method
is faster than other subspace clustering-based approaches; further, it achieves high clustering
accuracy due to the proposed similarity-constrained sampling technique.

4 Experimental Results

In this section, we compare our method (F4SC) against the following subspace clustering-based
algorithms: SSSC,15 SR-SSC,20 SSC-OMP,17 EnSC,16 ESC-FFS,19 and 3DS-SSC.9 All of our
experiments were conducted using MATLAB vR2020a with 16 workers in a parallel pool con-
figured by default to execute the proposed method on a computer with an Intel Xeon Processor
E5-2697 v3 and 180 GB RAM.

4.1 Hyperspectral Datasets and Used Metrics

The proposed method was tested on three real hyperspectral datasets31 with different imaging
environments. These images were acquired by the airborne visible/infrared imaging spectrom-
eter and the reflecting optics system imaging spectrometer. The first HSI is the Indian Pines with
a spatial resolution of 145 × 145 and 203 spectral bands. The second image is Salinas with a
spatial resolution of 512 × 217 and 204 spectral bands. The third image is Pavia University with
a spatial resolution of 610 × 340 and 103 spectral bands. In the experiments, the number of ki
classes within a segment was set as manual input for the proposed subspace clustering
Algorithm 1. The parameters shown in Eqs. (6) and (7) were fixed as λZ ¼ 2 · 10−4 and
γ ¼ 10−6, respectively. To evaluate the clustering precision, we used OA, average accuracy
(AA), Cohen’s kappa coefficient (kappa), and normalized mutual information (NMI).32

4.2 Ablation Study

We first conduct four ablation experiments and investigate different options in the proposed
workflow shown in Fig. 1:

• Experiment 1: We only use superpixels for similarity-restricted sampling.
• Experiment 2: We use another superpixel segmentation method, known as linear spectral

clustering (LSC),33 instead of SLIC to segment the 2D image.
• Experiment 3: We use the Canny34 algorithm for edge detection instead of Sobel.
• Experiment 4: We use a different method to get a 2D matrix from the HSI before applying

edge detection. In particular, for these experiments, we use PCA to obtain the 2D matrix.

In Table 2, the results obtained by performing different experiments are shown, which led us
to establish the workflow shown in Fig. 1 and Algorithm 1. From experiment 1, we can conclude
that only using the superpixels technique is not enough to extract the spatial information from the
HSI and the edge information helps to better discriminate among pixels within the intersection of
the clusters. In the second experiment, we observe that we also achieve good performance using

Table 2 Results of ablation experiments using the Indian Pines HSI.

Experiment Nv OA AA Kappa NMI Time (s)

1 750 77.58 75.90 0.748 0.632 2.68

2 1050 81.78 79.25 0.795 0.683 6.96

3 400 75.07 68.73 0.719 0.591 2.83

4 1000 79.11 74.40 0.764 0.636 7.22

F4SC 1250 85.08 81.55 0.832 0.711 4.69
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LSC, suggesting that any superpixels segmentation algorithm can be adopted in our proposed
framework. However, observing the last row of Table 2, we conclude that our F4SC algorithm
achieves the best clustering accuracy and computational time when using the SLIC algorithm to
obtain the superpixels. In the third experiment, the Canny algorithm allows us to achieve a better
clustering of the subspaces than the previous experiment using the default parameters of the
method. However, the Canny algorithm requires tuning more parameters in comparison with
the Sobel operator. Finally, in experiment 4, PCA was applied to obtain a 2D matrix from the
HSI for edge detection using the Sobel operator. In this experiment, a better clustering perfor-
mance was obtained compared with previous experiments; however, the PCA algorithm is slow,
and its computational complexity grows exponentially with the dimensions of the HSI. It is
worth mentioning that the number of segments shown in Table 2 leads to the best OA within
each experiment configuration.

Through the development of all four experiments, we conclude that the best way to approach
the cluster of subspaces in HSIs using the spatial information for our approach are the steps
described in Fig. 1 and Algorithm 1. Once the reasons for how we define our workflow have
been shown, the next step is to analyze the impact on precision and computational time in the
number of segments obtained on image B. Then, in Figs. 4–6, the evolution of the OA and the
execution time in terms of the number of segments (Nv) for each dataset previously mentioned
are illustrated.

(a) (b)

Fig. 4 Evolution of (a) OA and (b) execution time as a function of the number of segments (Nv ) in
the Indian Pines HSI.

(a) (b)

Fig. 5 Evolution of (a) OA and (b) execution time as a function of the number of segments (Nv ) in
the Salinas HSI.
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(a) (b)

Fig. 6 Evolution of (a) OA and (b) execution time as a function of the number of segments (Nv ) in
the Pavia University HSI.

Table 3 Quantitative results for Indian Pines, where Nv ¼ 1250 in the proposed method.

Class SR-SSC EnSC SSC-OMP ESC-FFS 3DS-SSC SSSC F4SC

Alfalfa 00.00 00.00 00.00 00.00 00.00 00.00 89.10

Corn-notill 53.20 59.77 16.70 44.53 26.82 62.20 86.41

Corn-mintill 14.00 19.68 04.00 37.71 36.87 19.00 87.73

Corn 07.00 0.880 00.00 08.86 13.08 04.40 83.97

Grass-pasture 22.30 34.10 94.10 52.58 57.14 35.30 83.02

Grass-trees 82.90 81.39 51.60 28.21 57.67 71.20 88.36

Grass-pasture-mowed 00.00 4.73 00.20 00.00 00.00 00.00 60.71

Hay-windrowed 85.10 85.67 27.60 85.98 97.49 86.80 83.26

Oats 04.80 04.70 12.10 50.00 00.00 03.70 65.00

Soybean-notill 32.40 37.87 37.50 30.04 49.07 29.60 81.89

Soybean-mintill 53.90 56.36 35.70 34.82 50.55 52.90 85.54

Soybean-clean 15.30 15.68 32.10 15.68 25.13 13.20 80.27

Wheat 62.30 32.95 47.40 94.63 92.20 29.90 87.81

Woods 72.80 87.90 50.00 42.76 56.92 84.10 89.86

Buildings-grass-trees-drives 28.40 29.43 4.300 15.54 49.22 12.60 82.84

Stone-steel-towers 73.60 13.77 00.00 10.57 86.02 00.00 73.12

OA 36.84 33.21 20.32 38.01 48.09 35.44 85.08

AA 39.06 40.64 11.54 34.51 43.64 32.36 81.55

Kappa 0.303 0.272 0.095 0.315 0.432 0.291 0.832

NMI 0.423 0.425 0.132 0.422 0.505 0.4155 0.711

Time (s) 16.85 1640 17.50 61.20 753.4 56.77 4.69
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As shown in the previous plots (Figs. 4–6) regardless of the HSI, when the number of seg-
ments is small, the computation time is high, and the precision is low because most of the spec-
tral signatures taken as points within the sample are clustered by SSC. When the number of
segments is large, the precision decreases, and the computation time is optimal because not
enough points are taken within the sample to learn the structure of the clusters present, and
therefore, the clustering that is carried out using minimal residual is imprecise. In addition,
we can observe that the highest precision is obtained when the number of points belonging per
segment ρ ∈ ½15;35�.

4.3 Visual Maps and Quantitative Results

In Tables 3–5, we present quantitative results of the proposed approach (F4SC) and the baseline
algorithms for the Indian Pines, Salinas, and Pavia University images, respectively. For the state-
of-the-art algorithms with which we compare our model and perform a random initialization, the
results shown in the tables are the average of running this method 10 times. In addition, the
optimal value for each metric is shown in bold, and the second-best result is in italics.
Following each table, the visual maps of the three methods that obtained the best OA are shown,
ordered from highest to lowest, in Figs. 7–9.

Table 4 Quantitative results for Salinas, where Nv ¼ 7000 in the proposed method.

Class SR-SSC EnSC SSCOMP ESC-FFS 3DS-SSC SSSC F4SC

Brocoli_green_weeds_1 00.00 00.00 04.50 00.00 00.00 00.00 89.50

Brocoli_green_weeds_2 51.90 64.30 29.30 99.40 100.0 62.20 89.16

Fallow 93.30 100.0 55.00 00.00 26.19 19.00 86.54

Fallow_rough_plow 96.10 03.70 99.00 99.13 85.06 04.40 89.45

Fallow_smooth 74.30 61.40 85.60 94.39 91.23 35.30 88.76

Stubble 99.80 99.90 62.20 90.47 100.0 71.20 91.89

Celery 64.00 98.00 18.40 99.55 98.66 00.00 90.89

Grapes untrained 63.90 72.90 64.50 62.07 42.17 86.80 88.68

Soil vineyard develop 82.70 00.60 71.80 91.01 91.93 03.70 89.54

Corn senesced green weeds 63.60 64.20 18.50 56.92 61.14 29.60 88.77

Lettuce romaine 4wk 4.90 00.00 01.80 00.20 98.51 52.90 84.83

Lettuce romaine 5wk 91.40 39.10 22.50 95.58 94.17 13.20 85.47

Lettuce romaine 6wk 00.00 84.00 00.00 91.37 00.00 29.90 85.26

Lettuce romaine 7wk 38.70 93.40 11.10 92.24 100.0 84.10 85.61

Vineyard untrained 50.00 51.00 45.30 59.75 74.72 12.60 86.87

Vineyard vertical trellis 98.50 96.6 01.20 10.84 100.0 00.00 86.81

OA 56.98 56.18 33.36 69.24 72.20 70.76 88.55

AA 54.79 56.23 29.45 65.20 72.80 60.05 87.99

Kappa 0.523 0.519 0.279 0.656 0.695 0.660 0.873

NMI 0.71 0.744 0.527 0.739 0.812 0.809 0.752

Time (s) 102.83 5987 248.9 894.3 4453 2339.1 25.71
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Table 5 Quantitative results for Pavia University, where Nv ¼ 10300 in the proposed method.

Class SR-SSC EnSC SSC-OMP ESC-FFS 3DS-SSC SSSC F4SC

Asphalt 62.10 70.00 52.90 64.75 76.90 61.07 87.27

Meadows 83.90 76.00 87.70 24.01 48.01 77.09 86.71

Gravel 00.00 00.00 27.20 00.28 74.71 01.21 90.14

Trees 48.40 66.00 69.60 71.63 91.53 58.11 87.24

Painted metal sheets 80.90 58.00 00.00 99.47 00.00 00.00 91.08

Bare soil 37.70 23.00 20.30 30.62 45.54 20.23 84.73

Bitumen 00.00 08.00 03.10 91.42 00.00 13.23 91.50

Self-blocking bricks 37.80 05.00 27.30 88.51 87.32 13.72 90.47

Shadows 78.30 00.00 00.90 99.04 00.00 03.75 92.08

OA 43.46 32.98 39.36 44.03 55.98 42.70 87.86

AA 51.13 37.18 30.11 66.30 47.12 34.30 88.18

Kappa 0.346 0.224 0.284 0.370 0.479 0.245 0.843

NMI 0.519 0.477 0.413 0.515 0.623 0.368 0.708

Time (s) 264.1 5185 730.3 4169 5172 5272 40.59

Fig. 7 Visual maps for Indian Pines: (a) ground truth, (b) F4SC, (c) ESC-FFS, and (d) SR-SSC.

Fig. 8 Visual maps for Salinas: (a) ground truth, (b) F4SC, (c) SSSC, and (d) SR-SSC.
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4.4 Comparison with Deep Learning Methods

Due to the great advances that artificial intelligence has had in the last decade, in this section, we
show some works in which deep learning is used for subspace clustering in HSIs. In Tables 6 and
7, we compare our results with the following works: fused 3-D deep neural networks (F3D),35

fast 3D-CNN (FST),36 graph convolutional neural network (GCN),37 and multiscale 3D convolu-
tional neural network (MSC).38

As can be noticed in the previous tables, the methods based on deep learning obtain the
highest precision when assigning the clusters belonging to an HSI. However, even with their
high precision, these methods have a high inference time compared with F4SC. Our method
can be seen as a trade-off between precision and computation time, being efficient in both
aspects.

5 Conclusions

In this work, we presented an efficient subspace clustering algorithm for HSIs that can handle
large-scale datasets and take advantage of spectral image’s neighboring spatial information to
boost the clustering accuracy. Our method considers the spatial information present in the scene

Fig. 9 Visual maps for Pavia University: (a) ground truth, (b) F4SC, (c) SR-SSC, and (d) SSSC.

Table 6 Results of deep learning approaches in the HSI Indian Pines.

F3D FST GCN MSC F4SC

OA 96.98 95.83 95.42 94.28 85.05

AA 96.85 95.68 95.28 94.08 81.55

Kappa 0.968 0.957 0.954 0.941 0.832

Time (s) 274.3 321.7 322.4 389.5 4.69

Table 7 Results of deep learning approaches in the HSI Salinas.

F3D FST GCN MSC F4SC

OA 97.65 96.75 96.84 96.42 88.55

AA 97.52 96.89 96.63 96.24 87.99

Kappa 0.974 0.969 0.967 0.963 0.873

Time (s) 289.6 364.1 210.9 394.4 25.71
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by detecting edges and superpixels and then dividing the HSI into multiple segments. Next, our
method performs the SSC algorithm and minimal residual within each segment. Finally, the
method merges the individual results to obtain the full HSI clustering. The experimental results
with real datasets show that our approach is remarkably efficient compared with other algorithms
that we evaluated. Specifically, we achieved an increase in the OA of 36%, 32%, and 16% for the
Indian Pines, Pavia University, and Salinas datasets, respectively, compared with the state-of-the-
art algorithms. Furthermore, we show that the execution time of our method can be up to 50
times faster than some methods based on deep learning.

6 Appendix A. Estimation of the Number of Subspaces

Typically, to test the performance of SC-based algorithms, it is assumed that the labels or ground
truth are known. However, in practice, the number of clusters ki could be unknown. In such a
case, the value of ki can be estimated using a rank selection technique that selects the rank and
sparsity tuning parameters simultaneously for hyperspectral data.39 Das et al.40 proposed esti-
mating the number of clusters present in the HSI by choosing the optimal threshold value
between the higher and smaller eigenvalues of the matrix covariance of the HSI. These
approaches are interesting, but they estimate the number of clusters using direct information
from the spectral image. Therefore, we decided to use the approach proposed by Von
Luxburg,21 which estimates the number of clusters using the Laplacian matrix A:

EQ-TARGET;temp:intralink-;e009;116;489ki ≈ arg max
i∈½ue−1�

ðλiþ1 − λiÞ; (9)

where λ1 ≤ λ2; · · · ;≤ λue are the eigenvalues of the normalized Laplacian of the graph given by
matrix A described in Sec. 2.

References

1. C. V. Correa et al., “Multiple snapshot colored compressive spectral imager,” Opt. Eng.
56(4), 041309 (2016).

2. K. Sanchez, C. Hinojosa, and H. Arguello, “Supervised spatio-spectral classification of
fused images using superpixels,” Appl. Opt. 58(7), B9–B18 (2019).

3. N. Patel et al., “Study of crop growth parameters using airborne imaging spectrometer data,”
Int. J. Remote Sens. 22(12), 2401–2411 (2001).

4. B. Hörig et al., “Hymap hyperspectral remote sensing to detect hydrocarbons,” Int. J.
Remote Sens. 22(8), 1413–1422 (2001).

5. M. T. Eismann, A. D. Stocker, and N. M. Nasrabadi, “Automated hyperspectral cueing for
civilian search and rescue,” Proc. IEEE 97(6), 1031–1055 (2009).

6. A. Y. Ng et al., “On spectral clustering: analysis and an algorithm,” in Adv. Neural Inf.
Process. Syst., T. Dietterich, S. Becker, and Z. Ghahramani, Eds., MIT Press (2002).

7. E. Elhamifar and R. Vidal, “Sparse subspace clustering,” in IEEE Conf. Comput. Vision and
Pattern Recognit., 2009. CVPR 2009., IEEE, pp. 2790–2797 (2009).

8. E. Elhamifar and R. Vidal, “Sparse subspace clustering: algorithm, theory, and applica-
tions,” IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013).

9. C. A. Hinojosa et al., “Hyperspectral image segmentation using 3D regularized subspace
clustering model,” J. Appl. Remote Sens. 15(1), 016508 (2021).

10. C. Hinojosa, J. Bacca, and H. Arguello, “Coded aperture design for compressive spectral
imaging subspace clustering,” IEEE J. Sel. Top. Sign. Process. 12(6), 1589–1600 (2018).

11. C. A. Hinojosa, J. Bacca, and H. Arguello, “Spectral imaging subspace clustering with 3-D
spatial regularizer,” in Digital Hologr. and Three-Dimens. Imaging, Optical Society of
America, p. JW5E–7 (2018).

12. H. Zhang et al., “Spectral–spatial sparse subspace clustering for hyperspectral remote sens-
ing images,” IEEE Trans. Geosci. Remote Sens. 54(6), 3672–3684 (2016).

Lopez, Hinojosa, and Arguello: Efficient subspace clustering of hyperspectral images. . .

Journal of Applied Remote Sensing 036507-14 Jul–Sep 2021 • Vol. 15(3)

https://doi.org/10.1117/1.OE.56.4.041309
https://doi.org/10.1364/AO.58.0000B9
https://doi.org/10.1080/01431160117383
https://doi.org/10.1080/01431160120909
https://doi.org/10.1080/01431160120909
https://doi.org/10.1109/JPROC.2009.2013561
https://doi.org/10.1109/CVPR.2009.5206547
https://doi.org/10.1109/CVPR.2009.5206547
https://doi.org/10.1109/TPAMI.2013.57
https://doi.org/10.1117/1.JRS.15.016508
https://doi.org/10.1109/JSTSP.2018.2878293
https://doi.org/10.1109/TGRS.2016.2524557


13. H. Zhai et al., “A new sparse subspace clustering algorithm for hyperspectral remote sensing
imagery,” IEEE Geosci. Remote Sens. Lett. 14(1), 43–47 (2016).

14. S. Huang, H. Zhang, and A. Pižurica, “Semisupervised sparse subspace clustering method
with a joint sparsity constraint for hyperspectral remote sensing images,” IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 12(3), 989–999 (2019).

15. X. Peng et al., “A unified framework for representation-based subspace clustering of out-of-
sample and large-scale data,” IEEE Trans. Neural Networks Learn. Syst. 27(12), 2499–2512
(2015).

16. C. You et al., “Oracle based active set algorithm for scalable elastic net subspace clustering,”
in Proc. IEEE Conf. Comput. Vision and Pattern Recognit., pp. 3928–3937 (2016).

17. C. You, D. Robinson, and R. Vidal, “Scalable sparse subspace clustering by orthogonal
matching pursuit,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit., pp. 3918–
3927 (2016).

18. N. Gauraha, “Introduction to the lasso,” Resonance 23(4), 439–464 (2018).
19. C. You et al., “Scalable exemplar-based subspace clustering on class-imbalanced data,” in

Proc. Eur. Conf. Comput. Vision (ECCV), pp. 67–83 (2018).
20. M. Abdolali, N. Gillis, and M. Rahmati, “Scalable and robust sparse subspace clustering

using randomized clustering and multilayer graphs,” Signal Process. 163, 166–180
(2019).

21. U. Von Luxburg, “A tutorial on spectral clustering,” Stat. Comput. 17(4), 395–416 (2007).
22. B. Nasihatkon and R. Hartley, “Graph connectivity in sparse subspace clustering,” in CVPR

2011, IEEE, pp. 2137–2144 (2011).
23. H. Zhai et al., “Kernel sparse subspace clustering with a spatial max pooling operation for

hyperspectral remote sensing data interpretation,” Remote Sens. 9(4), 335 (2017).
24. E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vision, Vol. 201,

Prentice Hall Englewood Cliffs (1998).
25. H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdiscipl. Rev.:

Comput. Stat. 2(4), 433–459 (2010).
26. E. Bingham and H. Mannila, “Random projection in dimensionality reduction: applications

to image and text data,” in Proc. Seventh ACM SIGKDD Int. Conf. Knowl. Discov. and Data
Mining, pp. 245–250 (2001).

27. O. R. Vincent et al., “A descriptive algorithm for Sobel image edge detection,” in Proc. Inf.
Sci. & IT Educ. Conf. (InSITE), Informing Science Institute California, Vol. 40, pp. 97–107
(2009).

28. R. Achanta et al., “SLIC superpixels compared to state-of-the-art superpixel methods,” IEEE
Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012).

29. M. Annergren, A. Hansson, and B. Wahlberg, “An ADMM algorithm for solving l1 regu-
larized MPC,” in IEEE 51st IEEE Conf. Decision and Control (CDC), IEEE, pp. 4486–4491
(2012).

30. J. Wright et al., “Robust face recognition via sparse representation,” IEEE Trans. Pattern
Anal. Mach. Intell. 31(2), 210–227 (2009).

31. M. Graña, M. Veganzons, and B. Ayerdi, “Hyperspectral remote sensing scenes,” 2020,
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes.

32. T. Lillesand, R. W. Kiefer, and J. Chipman, Remote Sensing and Image Interpretation, John
Wiley & Sons (2015).

33. Z. Li and J. Chen, “Superpixel segmentation using linear spectral clustering,” in Proc. IEEE
Conf. Comput. Vision and Pattern Recognit., pp. 1356–1363 (2015).

34. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach.
Intell. PAMI-8(6), 679–698 (1986).

35. A. Sellami et al., “Fused 3-D spectral-spatial deep neural networks and spectral clustering
for hyperspectral image classification,” Pattern Recognit. Lett. 138, 594–600 (2020).

36. M. Ahmad et al., “A fast and compact 3-D CNN for hyperspectral image classification,”
IEEE Geosci. Remote Sens. Lett. 1–5 (2020).

37. A. Qin et al., “Spectral–spatial graph convolutional networks for semisupervised hyperspec-
tral image classification,” IEEE Geosci. Remote Sensi. Lett. 16(2), 241–245 (2018).

Lopez, Hinojosa, and Arguello: Efficient subspace clustering of hyperspectral images. . .

Journal of Applied Remote Sensing 036507-15 Jul–Sep 2021 • Vol. 15(3)

https://doi.org/10.1109/LGRS.2016.2625200
https://doi.org/10.1109/JSTARS.2019.2895508
https://doi.org/10.1109/JSTARS.2019.2895508
https://doi.org/10.1109/TNNLS.2015.2490080
https://doi.org/10.1109/CVPR.2016.426
https://doi.org/10.1007/s12045-018-0635-x
https://doi.org/10.1016/j.sigpro.2019.05.017
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1109/CVPR.2011.5995679
https://doi.org/10.1109/CVPR.2011.5995679
https://doi.org/10.3390/rs9040335
https://doi.org/10.1002/wics.101
https://doi.org/10.1002/wics.101
https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1109/CDC.2012.6426429
https://doi.org/10.1109/TPAMI.2008.79
https://doi.org/10.1109/TPAMI.2008.79
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
https://doi.org/10.1109/CVPR.2015.7298741
https://doi.org/10.1109/CVPR.2015.7298741
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1016/j.patrec.2020.08.020
https://doi.org/10.1109/LGRS.2020.3043710
https://doi.org/10.1109/LGRS.2018.2869563


38. M. He, B. Li, and H. Chen, “Multi-scale 3d deep convolutional neural network for hyper-
spectral image classification,” in IEEE Int. Conf. Image Process. (ICIP), IEEE, pp. 3904–
3908 (2017).

39. B. Rasti, M. O. Ulfarsson, and J. R. Sveinsson, “Hyperspectral subspace identification using
sure,” IEEE Geosci. Remote Sens. Lett. 12(12), 2481–2485 (2015).

40. S. Das, A. Routray, and A. K. Deb, “Noise robust estimation of number of endmembers in a
hyperspectral image by eigenvalue based gap index,” in 8th Workshop Hyperspectral Image
and Signal Process.: Evol. in Remote Sens. (WHISPERS), IEEE, pp. 1–5 (2016).

Jhon Lopez received his BSc Eng degree in systems engineering and informatics from the
Universidad Industrial de Santander, Colombia, in 2020. Currently, he is pursuing his MSc
degree in computer science at the Universidad Industrial de Santander. His research interests
include deep optics, high-dimensional image processing, unsupervised learning, computer
vision, and deep learning.

Carlos Hinojosa received his BSc Eng and MSc degrees in systems engineering and informatics
from the Universidad Industrial de Santander, Colombia, in 2015 and 2018, respectively.
Currently, he is pursuing his PhD in computer science at the Universidad Industrial de Santander.
His research interests include computational imaging, high-dimensional image processing, unsu-
pervised learning, optical code design, compressive imaging, computer vision, and sparse
representation.

Henry Arguello received his BSc Eng degree in electrical engineering and MSc degree in elec-
trical power from the Universidad Industrial de Santander, Bucaramanga, Colombia, in 2000 and
2003, respectively, and his PhD in electrical engineering from the University of Delaware, USA,
in 2013. Currently, he is an associate professor with the Department of Systems Engineering,
Universidad Industrial de Santander. His research interests include high-dimensional signal
processing, optical imaging, compressed sensing, and computational imaging.

Lopez, Hinojosa, and Arguello: Efficient subspace clustering of hyperspectral images. . .

Journal of Applied Remote Sensing 036507-16 Jul–Sep 2021 • Vol. 15(3)

https://doi.org/10.1109/ICIP.2017.8297014
https://doi.org/10.1109/LGRS.2015.2485999
https://doi.org/10.1109/WHISPERS.2016.8071676
https://doi.org/10.1109/WHISPERS.2016.8071676

