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Abstract. The accurate segmentation of remotely sensed hyperspectral images has widespread
attention in the Earth observation and remote sensing communities. In the past decade, most of
the efforts focus on the development of different supervised methods for hyperspectral image
classification. Recently, the computer vision community is developing unsupervised methods
that can adapt to new conditions without leveraging expensive supervision. In general, among
unsupervised classification methods, sparse subspace clustering (SSC) is a popular tool that
achieves good clustering results on experiments with real data. However, for the specific case
of hyperspectral clustering, the SSC model does not take into account the spatial information of
such images, which limits its discrimination capability and hampering the spatial homogeneity
of the clustering results. As a solution, we propose to incorporate a regularization term to the
SSC model, which takes into account the neighboring spatial information of spectral pixels in the
scene. Specifically, the proposed method uses a three-dimensionall (3D) Gaussian filter to per-
form a 3D convolution on the sparse coefficients, obtaining a piecewise-smooth representation
matrix that enforces an averaging constraint in the SSC optimization program. Extensive sim-
ulations demonstrate the effectiveness of the proposed method, achieving an overall accuracy of
up to 99% in the selected hyperspectral remote sensing datasets. © 2021 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.15.016508]
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1 Introduction

Hyperspectral imaging sensors collect spectral information at every spatial location of a scene.
The acquired high dimensional data are commonly regarded as three-dimensional (3D) images,
where two of the coordinates correspond to the spatial domain (x, y) and the third one represents
the spectral wavelengths (1)."* Such 3D images are known as hyperspectral images, which we
also will refer to them as hyperspectral images (HSI) through the paper. Every spatial location in
a hyperspectral image is represented by a vector, also known as spectral signature of the pixel or
spectral pixel, whose values correspond to the intensity at different spectral bands, as shown in
Fig. 1. Since materials reflect different electromagnetic energy at specific wavelengths,'* the
information provided by the spectral signatures allows for better characterization and discrimi-
nation of the objects within the scene. In remote sensing, the classification of HSI is an important
computer vision task for many practical applications, such as precision agriculture,* vegetation
classification,” monitoring and management of the environment,>’ as well as security and
defense.'®!! Due to the cost of both data labeling and algorithm supervision, the development
of unsupervised methods that can adapt to new conditions has drawn the attention of Earth obser-
vation and remote sensing communities.

In general, the accurate unsupervised classification of the spectral pixels is challenging due to
the high-dimensional feature space. In the literature, many different clustering methods for HSI
land-cover segmentation have been proposed. The fuzzy c-mean'> (FCM) is one the early and
most used method for image segmentation, and its success relies on the introduction of fuzziness
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Fig. 1 Hyperspectral image land cover segmentation via subspace clustering theory.

for the belongingness of each image pixels. Even though FCM is efficient for images with simple
texture and background, it fails to segment images with complex structures, e.g., HSI, or images
corrupted by noise since it does not take advantage of the spatial information. In this respect,
authors in Ref. 13 proposed the spatial fuzzy c-mean (FCM_S1), which employee average filter-
ing and median filtering to obtain the spatial neighborhood information in advance.

Among recent works on HSI unsupervised classification, the robust manifold matrix factori-
zation (RMMF) is based on unified low-rank matrix factorization and performs dimensionality
reduction in conjunction with data clustering.'* The authors also designed an augmented
Lagrangian method-based procedure to find the optimal local solution of the proposed optimi-
zation. Moreover, in Ref. 15, the authors presented the 3D-CAE, an end-to-end approach to
segment HSI and offer high-quality segmentation in an unsupervised way. In particular, the
paper introduces a deep learning technique that uses a 3-D convolutional autoencoder to learn
embedded features with later undergo clustering, which is performed during the network training
with a clustering-oriented loss.

On the other hand, during the last decade, some of the most successful unsupervised learning
methods first find low-dimensional subspaces that represent the high-dimensional features
before performing any further processing. For instance, subspace clustering (SC) refers to the
task of separating data according to their underlying subspaces. Among SC algorithms, the
sparse subspace clustering (SSC) model is one of the most successful and has been used in
applications such as image representation, and motion and image segmentation.'®!” SSC cap-
tures the global geometric relationship among all data points by expressing each one of them as a
linear combination of all others. Then, the set of solutions is restricted to be sparse by minimizing
the #; norm of the representation coefficient matrix.'® Finally, an affinity matrix is built using the
obtained sparse coefficients, and the normalized spectral clustering algorithm'” is applied to
achieve the final segmentation. Instead of learning the underlying subspaces by expressing each
point as a linear combination of all other points, some recent SC algorithms proposed to select
the most representative data points before built the affinity matrix. For instance, the scalable and
robust SSC (SR-SSC)? selects a few sets of anchor points using a randomized hierarchical clus-
tering method. Then, within each set of anchor points, it solves the LASSO?! problem for each
data point, only allowing anchor points to have non-zero weights. Similarly, the exemplar-based
subspace clustering (ESC-FFS)*? proposes to select a small subset that represents all data points
using the farthest first search (FFS)** algorithm, which is a modified version of the farthest-first
traversal algorithm.”® However, these general-purpose methods do not fully exploit the complex
structure of remotely sensed hyperspectral images. Furthermore, they do not consider the rich
spatial information of the spectral images, which could boost the accuracy of these algorithms on
HSI imagery.
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In general, the spectral signatures corresponding to a specific land-cover material would lie in
the same nonlinear manifold. However, the manifold clustering represents a more complex prob-
lem than subspace (flat manifolds) clustering.>* On the other hand, different previous works have
been successfully modeling the hyperspectral image segmentation problem using the SC
theory.?>?® Those works relax the problem by assuming that the spectral variability of the sig-
natures is approximately linear; hence, the spectral signatures with similar spectral character-
istics have a high probability of lying in the same affine low-dimensional subspace. For
instance, the SSC algorithm has been successfully used for land cover segmentation.”’™
However, the traditional SSC model only captures the relationship between pixels by analyzing
the spectral features and does not take advantage of the spatial information. Considering that
spectral pixels belonging to the same land cover material are arranged in common regions within
the HSI, the sparse representation matrix of the SSC model should also account for the spatial
relationship between neighboring pixels. Indeed, it is expected that the obtained representation
coefficients of two adjacent pixels would be very similar since they capture the geometric rela-
tionship among pixels.

Recently, few works have proposed to take into account the neighboring spatial information
by incorporating a regularization term in the SSC optimization problem, which enforces a local
averaging constraint on the sparse coefficient matrix.”>>* However, the regularization term
proposed in such works assigns the same sparse basis to adjacent pixels by performing inde-
pendent two-dimensional (2D) smoothing operations over one column vector of the SSC rep-
resentation matrix without taking advantage of the information among columns. In this work,
we propose to efficiently integrate the spatial-contextual information of the HSI in the SSC
model by performing a 3D convolution operation with a 3D Gaussian filter over the represen-
tation coefficient matrix. This procedure provides a more accurate coefficient matrix by taking
into account the information among adjacent representation coefficient column vectors of the
SSC matrix to enforce an averaging constraint, which preserves the similarity and improves the
clustering accuracy. We incorporate the 3D convolution into the SSC model by adding a regu-
larization term to the optimization problem. Experimental results demonstrate that the proposed
approach significantly improves the clustering performance, in both the visual and quantitative
evaluations.

We organize the paper as follows: Section 2 briefly introduces the HSI land cover segmen-
tation via SC model. In Sec. 3, we present the mathematical formulation of the proposed 3D
regularized subspace clustering model (3DS-SSC) for HSI segmentation. Besides, we give a
solution to the proposed optimization problem using the alternating direction method of multi-
pliers (ADMM) algorithm. Section 4 presents the experimental results, and Sec. 5 gives the
conclusions of this work.

2 HSI Land Cover Segmentation via Subspace Clustering Model

In recent years, different advances in processing complex high-dimensional data rely on the
observation that their intrinsic dimension is often much smaller than the dimension of the ambi-
ent space.'® This led to the development of different techniques for finding a low-dimensional
representation, or subspace, of high-dimensional data sets.”*> In practice, all the high-
dimensional data points can be modeled as being drawn from a union of multiple linear or affine
subspaces where the membership of the data points to each subspace might be unknown. Then,
SC refers to the problem of separating data according to their underlying subspaces. The sub-
spaces can be linear or affine, which could be seen as a linear subspace with a constraint that the
sum of all the coordinates is equal to one. One of the most popular SC algorithms is the SSC.*
The key idea behind SSC is that among the infinitely many possible representations of a data
point in terms of the others, a sparse representation corresponds to selecting a few points from the
same subspace.

Assuming that HSI’s pixels are drawn from a union of multiple subspaces and spectral pixels
with a similar spectrum belong to the same land cover material, SSC can be effectively applied to
perform unsupervised land cover segmentation. Denote a spectral pixel x; as a D-dimensional
vector after lexicographically reordering the N, X N, X D 3D data cube into a 2D matrix as
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X = [x1, X0, L X, - xy] € RP, where N = N,N_, and D refers to the number of spectral
bands.? Note that each column of X now corresponds to a spectral pixel (signature), see Fig. 1.
Under the context of SC, each column of X belongs to the union of k subspaces {S}*_,. By
taking advantage of the subspace structure, the data points in X obey the so called self-
expressiveness property,’ i.e., each data point in a union of subspaces can be well repre-
sented by a linear combination of other points in the dataset. This can be mathematically
expressed as

X =XZ, ey

where Z € RV is the representation coefficient matrix. The choice of Z is usually not unique,
and the goal is to find a certain Z that be discriminative for subspace clustering. The problem in
Eq. (1) is that it may have many feasible solutions, and thus the regularization is necessary to
produce the solution. Motivated by the observation that the block-diagonal solution is sparse,
SSC finds a sparse Z by £-norm minimizing. Here, the #; norm is used as the convex surrogate
of the £, norm, which is not convex and, otherwise, would turn the problem N P-hard.*” Then, the
sparse representation model can be built as follows:

min|[Z, + 4|R|} st X=XZ+R, diag(Z)=0. Z'1=1. )

where R stands for the representation error, and the parameter 4 is used to trade-off the relative
contribution between the sparsity of the coefficients and the magnitude of the noise. Here,
diag(Z) € RV is the vector of the diagonal elements of Z, and the constraint diag(Z) = 0 is
used to eliminate the trivial solution of writing a point as an affine combination of itself.*?
In addition, the constraint Z71 = 1 ensures that it is a case of an affine subspace.

The optimization problem in Eq. (2) can be solved by the ADMM, and its implementation
can be found in Ref. 32. The solution obtained by Eq. (2) corresponds to subspace-sparse rep-
resentation of the data points, which is used by spectral clustering to infer the clustering of the
data. Specifically, the clustering result is obtained by applying the spectral clustering to the
Laplacian matrix induced by the similarity matrix W € RV defined as W = |Z| + |Z|T,
where the operator | - | stands for the absolute value. This definition of W is adopted to ensure
that the matrix is both >0 and symmetric.'"® The complete SSC method is summarized in
Algorithm 1.

As observed in Eq. (2), the SSC model for HSI only captures the relationship of pixels by
analyzing the spectral features without considering the spatial information. In the following sec-
tion, we present the proposed subspace clustering approach, which successfully improves the
clustering results on HSI by considering the spatial information in the optimization problem.

Algorithm 1 SSC algorithm??

Input: HSI data X € RP*V, containing a set of spectral pixels {x,-}j’\i1 , in a union of k affine subspaces {S;}% ;;
the number of subspaces k and the regularization parameter 1

Output: Matrix X with the obtained clustering labels of X
Function SSC(X, k, 1)

1 Solve the sparse optimization problem in Eq. (2).

2 Normalize the columns of Z as z;« H;—fum

3 Form a similarity matrix as W = |Z| + |Z|7, representing the relationship (weights) among data points.
4 Apply spectral clustering'® to the similarity matrix.

5 return Segmentation of the data: f(1, coe, Xy
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3 Sparse Subspace Clustering with 3D Spatial Regularization

In the SSC model, the j’th column of the sparse representation matrix Z contains the represen-
tation coefficient distribution of the whole image with respect to a single atom. Alternatively,
using the spectral unmixing jargon, this can be thought of as a specific fractional abundance
concerning an endmember in the unmixing domain. Similarly, the j’th row of Z should present
a similar coefficient distribution due to the symmetric nature of Z. The meaning of each row or
column of Z is better appreciated by reshaping the corresponding MN vector into a M X N
matrix, as shown in Fig. 2.

Notice that the spectral pixels belonging to the same land cover material are arranged in
common regions, i.e., two spatially neighboring pixels in an HSI usually have a high probability
of belonging to the same class. Hence their representation coefficients should also be very
close, concerning the same sparse basis, according to the SSC mechanism. Then, in general,
the obtained Z should be piecewise smooth since there is a spatial relationship between the
sparse representation vector of every pixel and its neighbors. This observation suggests that
it is reasonable to apply a spatial constraint to Z in the optimization problem. The aim of this
work is to improve the representation coefficient matrix by enforcing a 3D spatial regularization,
hence incorporating the contextual dependence of the pixels.

3.1 Problem Formulation

As previously discussed, the spatial neighborhood information of an HSI can be incorporated
into the SSC model by constraining Z to be piecewise-smooth. One approach to achieve it is
using a smoothing convolution that assigns similar sparse coefficients to adjacent pixels. Since it
is desired that the sparse coefficient matrix obtained by the SSC to be symmetric, and hence rows
and columns of Z present a similar coefficient distribution, we propose to use a 3D convolution
to perform the smoothing on Z.

Specifically, we first rearrange the 2D coefficient matrix Z to a 3-D cube Z € RV*NN guch
that each column of Z corresponds to a slice of 7. Then, we perform a 3D smoothness con-
volution by opening a 3D window to each spatial location of Z. The aim of using a 3D
Gaussian kernel to perform the smoothness operation is to simultaneously take advantage of
the information among adjacent columns/rows of Z, obtaining a more accurate sparse coefficient
matrix. The filtering is performed using the isotropic 3D Gaussian kernel given by

1 242442

Gy == 7 . 3)
sk 2o

with a specific window size h and standard deviation o. After the filtering process, the cube Zis

rearranged into the filtered coefficient matrix Z. Figure 3 shows the proposed methodology
described above.

Instead of directly imposing a smoothness constraint over Z, the enhanced coefficient matrix
Z can be used to regularize the solution of the SSC optimization problem described in Eq. (2).
Therefore, the proposed subspace clustering model for HSI segmentation is expressed as

. A .
min |Z], + ZIRIG + fa0s(Z) st X=XZ+R. diag(Z)=0, Z'1=1, @)
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where
o =712
faps(Z) ZEHZ_ZH% ®)

corresponds to the 3D spatial regularization term.

3.2 Optimization

To solve the optimization problem in Eq. (4), we develop an algorithm based on the ADMM
scheme.® First, an auxiliary matrix U € RV with the same size as the sparse coefficient matrix
Z is defined to separate the variables. In this way, we only need to solve the following
optimization problem:

A _
min |Z], + 2 [X - XU2 +2|Z U st Ul=1, U=Z-dag(Z), (6
ZUZ 2 2

where we directly replace the regularization term f3pg(Z) of Eq. (5) in Eq. (4). Note that, for
convenience, in this section, we will denote by diag(Z) both a vector whose elements are the
diagonal entries of Z and a diagonal matrix whose diagonal elements are the diagonal entries
of Z.

Following the ADMM scheme, and using a parameter p > 0, we add to the objective function
of Eq. (6) two penalty terms corresponding to the constraints UT1 = 1 and U = Z — diag(Z).
Then, we obtain the following optimization problem:

. A a, = p P .
min [|Z|, + 5| X = XU} + 5 [Z - U|lz +5 U1 = 1|3 + 2 ||U - [Z — diag(Z)]||7
ZUZ 2 2 2 2
st. U1 =1, U=1Z-diag(Z). )
It can be easily proved that adding the penalty terms to Eq. (6) does not change its optimal
solution, then the solutions to Egs. (4) and (6) coincide with that of Eq. (7).** Next, we introduce

a vector § € RMN and a matrix A € RYV*MN a5 Lagrange multipliers for the two equality con-
straints in Eq. (7) to obtain the Lagrange function

— A —
L£(2.U.2.8.8) = |2, + 51X - XU} + 31 Z - U} + £ U1 - 1]}
+ 211U~ Z - diag(2)][1} + 8 (UT1 = 1) + u{&T[U - Z + diag(Z)]}. ®)
where tr(-) denotes the trace operator of a given matrix.
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The optimization problem in Eq. (8) can then be divided into four subproblems:

1. U update: Ut is obtained by minimizing £ with respect to U while

(Z(’), AL A0 KU)) are fixed. We calculate the derivative of £ with respect to U and
set it to zero to obtain the calculation formula of U as follows:

(XX + al 4+ p117 4 pD)UHY) = XX + aZ) + p(117 + Z0) —16W" = A1, (9)

2. Z update: 7Z(’+71) is computed by minimizing £ with respect to Z while
(U(’“),Z(’),ﬁ(’), A") are fixed, obtaining

A
7+ — J- d]ag(J)’ J S F/l) <U(l+1) + 7) , (10)

where I'; /, (+) is a shrinkage-thresholding operator, 'y /,(v) = [|u| — (1/p)],sgn(v), and
the operator (-) returns its arguments if it is nonnegative and zero otherwise.

3. Enhanced coefficient matrix Z update: Once Z(+1) is obtained in the previous step, we
then use the actual matrix Z and follow the procedure described in Fig. 3 to update
Z'"*). We use the Gaussian kernel given by Eq. (3).

4. The Lagrange multipliers update: 5" and A
ascent update with step size p = 300, as follows:

are obtained through a gradient

o) =60 4 p(z+1 — 1] AUHD =AW 4 p[ut+h) — Z (D), (11)

These four steps are repeated until convergence is achieved or the number of iterations
exceeds the maximum fixed. Specifically, the iteration is terminated when we have
U1 1|, <& |[UD —ZO|| <F, |[UY — U~ <& where € denotes the error tolerance
for the primal and dual residuals.

Once the sparse coefficient matrix Z is obtained by solving the optimization problem in
Eq. (4), the segmentation of the data points is attained by applying spectral clustering to the
Laplacian matrix induced by the similarity matrix W € RV which is defined as
W = |Z| + |Z|"** The complete SSC with 3D regularization (3DS-SSC) is summarized in
Algorithm 2.

4 Experimental Evaluation

This section shows the performance of 3DS-SSC for land cover segmentation. (A MatLab imple-
mentation of Algorithm 2 can be found in Ref. 34.) The ADMM algorithm for solving the sparse
optimization problem in Eq. (4) was implemented in MATLAB. We used the implementation of
SSC, described in Algorithm 1, provided by authors in Ref. 32. All the experiments were
executed on an Intel Core i7 CPU (2.60 GHz, 6 cores), with 32 GB of RAM.

4.1 Experiment Setup

4.1.1 Databases

The proposed subspace clustering approach (3DS-SSC) was tested on three well-known hyper-
spectral images (The datasets can be downloaded from Ref. 35.), with different imaging envi-
ronments: Indian Pines, Salinas, and University of Pavia dataset. The Indian Pines hyperspectral
data set has 145 x 145 pixels and 200 spectral bands in the range 0.4 to 2.5 ym. The second
scene, Salinas, has 512 x 217 pixels and 204 spectral bands in the range 0.24 to 2.40 um. The
third scene, University of Pavia, comprises 610 x 340 pixels, and has 103 spectral bands with
spectral coverage ranging from 0.43 to 0.84 ym. In the first experiments we selected, for each
image, one frequently used region of interest (ROI) in hyperspectral image clustering, as shown
in Fig. 4. The Indian Pines ROI has a size of 70 X 70 pixels, which includes four main land-cover
classes: corn-no-till, grass, soybeans-no-till, and soybeans-min-till. The Salinas ROI comprises
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Algorithm 2 Sparse subspace clustering with 3D regularization (3DS-SSC).

Input: HSI data X € RP*V, containing a set of spectral pixels {x,}j’\i1 ,in a union of k affine subspaces {Sitk
the number of subspaces k and the regularization parameter 1; the window size h and standard
deviation ¢ of the 3D Gaussian kernel; ADMM maximum number of iteration MAXITER

Output: Matrix X with the obtained clustering labels of X

Function 3DS — SSC(X, k, 1)

1 > Solving the optimization problem in Eq. (4)

2 U9 =0,20=0,Z9=0,89 =0, A9 =0, p =300

3 fort=0,---,MAXITER-1 do

4 UTNearg ming £(Z0,U,Z0,50,A0)

5  Ztearg ming £(Z, UMD, Z0 50 A)

6  Z"econv3D(ZY, h, o)

7 5V FD 4 pZt1 - 1)

8 A AW 4 pu) — Z()y,

9 D Obtaining the segmentation using spectral clustering

10 Normalize the columns of Z as z;« ”;ﬁ

11 Form a similarity matrix as W = |Z| + |Z|7, representing the relationship (weights) among data points.

12 Apply spectral clustering'® to the similarity matrix.

13 return segmentation of the data: )A(1, -'-,)A(k.

Function conv3D(Z, h, o)

14 p Perform 3D convolution (see Fig. 3)

15 2<—reshape(2) > Reshapes each column of Z into a matrix using columnwise order

PP K?

16 Gjjix = —ﬁe 2?2 > 3D Gaussian kernel G € R*™h

17 Z<Z %G b 3D convolution
18 Z<reshape(Z) > Reshapes the cube back to a matrix

19 return Z

83 x 83 pixels and includes six classes: brocoli-1, corn-senesced, lettuce-4wk, lettuce-5wk, let-
tuce-6wk, and lettuce-7wk. The University of Pavia ROI is composed of 64 x 64 pixels and
includes four classes: asphalt, meadows, trees, and bricks. Figure 4 presents a false-color image,
the ground truth image, and the spectral signatures of each land cover class within (a)—(c) the
Indian Pines, (d)—(f) Salinas, and (g)—(i) University of Pavia selected ROIs, respectively. In addi-
tion, we also evaluate the performance of the proposed method using the full hyperspectral
images in Sec. 4.2.4.

4.1.2 Baselines and evaluation metrics

We compare our approach with three non-SSC-based algorithms for hyperspectral land cover
segmentation: the FCM_S1," the RMME,'* and the 3D-CAE," which use 3D convolutional
autoencoders to perform the clustering; with two SSC-based algorithms for hyperspectral
land-cover segmentation: the TV-KSSC-SMP* and S-SSC;* and with two state-of-the-art gen-
eral-purpose subspace clustering algorithms: ESC-FFS** and SR-SSC.?° Besides, we show the
results obtained with SSC*? as a reference. For the sake of fairness, we performed 10 experiments
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Fig. 4 False-colorimages, ground truth images and spectral curves of each land-cover classes for
(a)-(c) Indian Pines, (d)-(f) Salinas, and (g)—(i) University of Pavia ROIs, respectively.

for the ESC-FFS method, which relies on random initialization. Therefore, the presented results
in the tables are the average of all run trials, and we selected the best results to show the land
cover maps.

To compare the clustering performance of our model, we rely on six standard metrics: pro-
ducer’s accuracy (PA), user’s accuracy (UA), average accuracy (AA), overall accuracy (OA),
Kappa coefficient, and normalized mutual information (NMI).>”*® PA and UA represent the clus-
tering accuracy of each class. UA, AA, and OA values are presented in percentage, whereas
Kappa coefficients and NMI values range from O to 1, where 1 stands for perfect classification.

4.1.3 Parameters setting

In the experiments, the number of clusters was manually set for all the subspace clustering
algorithms. The regularization parameter 4, in Eq. (4), which acts as the trade-off between the
sparsity of the coefficient matrix and the magnitude of the noise, was set using the following
formulation:*?
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Fig. 5 Analysis of the parameters ¢ and « in terms of OA for (a) Indian Pines, (b) Salinas, and
(c) University of Pavia datasets.

(12)

A= é, y = min max [x],x,],
14 J#]

J

where S is the adjustment coefficient, y is a parameter related to the data set, which can be
explicitly determined, and x;, X; are columns of X. The regularization parameter a in Eq. (5)
denotes the weight of the spatial information in 3DS-SSC. Furthermore, the window size & of the
Gaussian kernel and the standard deviation ¢ in Eq. (3) also contribute in the incorporation of
spatial information to the subspace clustering model. In this work, the window size & is defined
as a function of the standard deviation ¢ as follows:

h=2[26]+ 1. (13)

We conducted different experiments varying @ and ¢ parameters to analyze the performance
of the proposed method with each hyperspectral image. The change in the OA of the 3DS-SSC
algorithm, corresponding to « values ranging from 600 to 1000 and ¢ values ranging from 0.5 to
8, is shown in Fig. 5. We observe that the clustering precision can significantly change when
using different values of a and o, which suggests that spatial information plays a very important
role in the clustering process. In order to make a fair comparison, we also performed simulations
with the other methods to select the best parameters in their configurations.

4.2 Visual and Quantitative Results

In this section, we present the visual and quantitative results obtained for the three hyperspectral
images described in Sec. 4.1. The clustering was a challenging task because the spectral sig-
natures of the land-cover classes in the selected ROIs are very similar and some of the spectral
curves are mixed, as shown in Figs. 4(c), 4(f), and 4(i). Table 1 summarizes the selected param-
eters for each SSC-based clustering method and hyperspectral image. For the other methods
(FCM_S1, RMMF, and 3D-CAE), we follow the parameter settings reported by the authors
in the corresponding literature. Note that, in the next sections, the quantitative evaluations shown
in Tables 2—4 present the best results in bold font and the second-best are italicized.

4.2.1 Indian Pines ROI

The clustering performance of each method with the Indian Pines ROI is visually and quanti-
tative reported in Fig. 6 and Table 2, respectively. From the results, it is evident that the two
methods that perform better in this HSI are the TV-KSSC-SMP and our proposed method 3DS-
SSC. Specifically, the 3DS-SSC achieved an OA of 80.41% and the TV-KSSC-SMP obtained an
OA of 76.72%. As observed in the quantitative evaluations, the most difficult classes to correctly
classify were the soybeans-no-till and soybeans-min-till. However, our method achieves the best
PA with the soybeans-no-till and the best UA with soybeans-min-till. From the visual results, it is
possible to observe that the TV-KSSC-SMP assigns more pixels to the wrong classes, hence it is
more penalized by the used accuracy metrics. On the other hand, it is observed that the proposed
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Table 1 Selected parameters for each testing hyperspectral images.
Parameters
SC-based method Indian Pines Salinas University of Pavia
SSC 1=7.76x10"7 1=117x10"° 1=3890x1076
S-SSC A=7.76x107, A=117x1075, 2 =3.90x 1075,
a=21x10° a=1.12x10° a=28.8x10°

TV-KSSC-SMP A=5.4,nv=3, A=7.4,nv=86, A=3.6,nv=38,

nf =150 nf =50 nf=15
ESC-FFS A =10, k =700, A =20, k=700, A=10, k =1000, t =20

t=10 t=10

SR-SSC 7 =200, nGraph =5, =100, nGraph = 8, 7 =700, nGraph = 15,

Ns =10 Ns =10 Ns =10
3DS-SSC A=776x1077, 2=1.17x1078, 2 =3.90x 1075,

a=118x%x10% 6=3

a=84x10%6=15

a=6.6x10%, 6=6

Table 2 Clustering performance of the different algorithms for the Indian Pines ROI.

TV-KSSC-
Metric FCM_S1 RMMF SSC S-SSC SMP ESC-FFS SR-SSC 3DS-SSC
PA  Corn-no-till 63.28 35.02 48.96 63.18 45.37 51.08 62.09 59.90
Grass 93.29 100.00 98.60 100.00 100.00 99.92 94.69 100.00
Soybean-no-till 46.99 4522 70.63 62.30 68.44 49.00 63.11 77.05
Soybeans-min-till ~ 77.20 94.17 59.23 75.78 96.54 84.12 75.44 91.32
UA  Corn-no-till 80.30 100.00 97.43 83.99 84.29 93.98 68.87 73.24
Grass 80.87 97.02 89.14 87.32 67.80 86.98 91.13 83.64
Soybean-no-till 53.42 64.39 41.36 53.84 97.85 55.15 58.19 73.73
Soybeans-min-till  66.16 59.47 6157 71.79 71.58 63.26 74.28 86.62
AA 70.19 68.60 69.35 75.31 77.59 71.03 73.83 82.07
OA 68.70 68.06 62.62 71.90 76.72 69.20 71.08 80.41
Kappa 0.55 052 048 0.60 0.66 0.55 0.59 0.72
NMI 0.37 045 039 042 0.53 0.42 0.38 0.57

method can take advantage of the spatial contextual information better, thus providing a
smoother result in comparison with the SSC and S-SSC methods.

4.2.2 Salinas ROI

Figure 7 shows the obtained land cover maps on the Salinas ROI. The quantitative evaluations
corresponding to the PA, UA, AA, OA, Kappa, and NMI with all the clustering methods are
reported in Table 3. As observed, the RMMEF algorithm achieves the best performance with an
OA 0of 98.20%. The second-best result was achieved by our proposed method 3DS-SSC with and
OA of 88.26%. In general, the most difficult land-cover class to classify was the corn-senesced
according to the PA and the Lettuce-4wk according to the UA. Although our method did not
obtain the best performance on these land-cover classes, the obtained results were not the worst
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Table 3 Clustering performance of the different algorithms for the Salinas ROI.

TV-KSSC-
Metric FCM_S1 RMMF SSC S-SSC SMP ESC-FFS SR-SSC 3DS-SSC
PA  Brocoli-1 89.00 98.72 9949 99.74 100.00 99.51 99.74 100.00
Corn-senesced  47.15 9731 5562 42.01 62.82 55.09 71.28 58.31
Lettuce-4wk 91.23 9545 93.51 95.29 100.00 90.99 0.00 100.00
Lettuce-5wk 88.36 99.53 99.53 91.46 36.79 99.80 56.29 99.06
Lettuce-6wk 94.62 98.92  0.00 99.85 100.00 29.48 99.85 99.08
Lettuce-7wk 78.47 98.44 99.87 97.41 90.27 98.20 98.31 92.09
UA Brocoli-1 35.44 97.23 100.00 100.00 100.00 99.62 100.00 87.28

Corn-senesced  85.63  100.00 100.00 96.37 100.00 95.90 100.00 99.46

Lettuce-4wk 99.65 96.39 9521 4457 62.22 94.97 0.00 53.24
Lettuce-5wk 95.91 97.69 6823 97.63 100.00 76.39 55.10 100.00
Lettuce-6wk 74.73 97.87  0.00 83.63 50.35 16.17 49.77 100.00
Lettuce-7wk 81.32 98.57 99.23 99.87 59.69 98.64 99.87 99.16
AA 81.47 98.06 74.67 87.63 81.65 78.85 70.91 91.42
OA 78.01 98.20 75.65 82.41 71.33 78.76 68.26 88.26
Kappa 0.73 0.98 0.69 0.79 0.66 0.73 0.61 0.86
NMI 0.68 0.94 0.83 0.83 0.70 0.80 0.75 0.87

Table 4 Clustering performance of the different algorithms for the University of Pavia ROI.

TV-KSSC-
Metric FCM_S1 RMMF SSC S-SSC SMP ESC-FFS SR-SSC 3DS-SSC
PA  Asphalt 100.00 100.00 100.00 100.00 50.26 99.02 72.49 100.00
Meadows 80.37 8785 97.82 96.26 99.38 67.73 93.46 99.82
Trees 77.71 79.62 77.71 98.09 68.15 99.11 98.73 99.25
Bricks 97.46 100.00 99.75 100.00 100.00 98.98 99.49 100.00
UA  Asphalt 91.53 100.00 100.00 100.00 98.96 100.00 100.00 100.00
Meadows 91.81 91.56  89.71 99.36 99.38 96.69 98.68 99.12
Trees 73.49 100.00 9457 92.77 36.27 62.72 88.07 99.93
Bricks 98.46 89.73 100.00 99.75 89.12 100.00 78.99 100.00
AA 88.88 91.87 93.82 98.59 79.45 91.21 91.04 99.76
OA 91.35 94.32  96.56 98.80 80.78 90.98 89.67 99.52
Kappa 0.88 0.92 0.95 0.97 0.74 0.88 0.86 0.99
NMI 0.78 0.86 0.92 0.96 0.77 0.87 0.80 0.99

reported in Table 3. In addition note that, although TV-KSSC-SMP achieves the best perfor-
mance in three different land-cover classes, its performance on the other classes is worst in com-
parison with our method. Conversely, although the RMMF algorithm only obtains the best
performance on one land cover class (corn-senesced), it achieves high and similar performance
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S-SSC, OA: 71.90% TV-KSSC-SMP, OA: 76.72%

B

3DS-SSC, OA: 80.41%

GroudTruth

- Unlabeled
\:l Grass
- Corn-no-till

- Soybeans-no-till
\:| Soybeans-min-till

Fig. 6 Land cover maps on Indian Pines ROI. The proposed method (3DS-SSC) is compared with
the methods FCM_S1, SSC, S-SSC, TV-KSSC-SMP, RMMF, ESC-FFS, and SR-SSC.

GroudTruth FCM _S1, OA: 78.01% SSC, OA: 75.65% S-SSC, OA: 82.41% TV-KSSC-SMP, OA: 71.33%

7.

- Unlabeled '

- Brocoli-1

Il Corn-senesced

|:| Lettuce-4wk .
|:| Lettuce-5wk

- Lettuce-6wk o

|:| Lettuce-Twk 4

Fig. 7 Land cover maps on Salinas ROI. The proposed method (3DS-SSC) is compared with the
methods FCM_S1, RMMF, SSC, S-SSC, TV-KSSC-SMP, ESC-FFS, and SR-SSC.

3DS-SSC, OA: 88.26%

on the other classes hence obtains the best OA. From the visual results, it is possible to observe
that the SR-SSC assigns more pixels to the wrong classes, hence it is more penalized by the used
accuracy metrics. On the other hand, it is observed that the visual results provided by our method
are smooth, which suggests that 3DS-SSC takes advantage of the spatial contextual information
in comparison with the other methods

4.2.3 University of Pavia ROI

Finally, Fig. 8 presents the obtained land cover maps on the University of Pavia ROI, and the
quantitative evaluations corresponding to the PA, UA, AA, OA, Kappa, and NMI with all the
clustering methods are reported in Table 4. As observed, our proposed method (3DS-SSC)
obtains an OA of 99.52%, which corresponds to the highest classification score of the land-cover
classes within the hyperspectral scene. The second-best result was achieved by the S-SSC
method with an OA of 98.80%. It is important to notice that this image was the easiest to cluster
since its spectral signatures are not critically mixed, as in the other hyperspectral scenes, see
Fig. 4(i). From the results, it is observed that the TV-KSSC-SMP achieves the worst performance
in this particular image. Although it also provides smooth results, TV-KSSC-SMP assigns more
pixels from the class tree to the other classes, hence it is penalized by the used accuracy metrics.
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TV-KSSC-SMP, OA: 80.78%

ESC-FFS, OA: 93.59% SR-SSC, OA: 89.67% 3DS-SSC, OA: 99.52%

GroudTruth FCM_S1, OA: 91.35% SSC, OA: 96.56% S-SSC, OA: 98.80%

RMMF, OA: 94.32%

Il Unlabeled
[ Asphalt
[ Meadows
B Trees
[ Bricks

[ %

Fig. 8 Land cover maps on University of Pavia ROI. The proposed method (3DS-SSC) is com-
pared with the methods FCM_S1, RMMF, SSC, S-SSC, TV-KSSC-SMP, ESC-FFS, and SR-SSC.

On the other hand, it can be observed that the proposed method better takes advantage of the
spatial contextual information, providing a smoother result in comparison with RMMF, SSC,
and S-SSC, which assign some pixels to the wrong classes.

4.2.4 Full hyperspectral images comparison

For the sake of completeness, we compare the proposed method with a recent deep learning-
based approach (3D-CAE)" that relies on 3D convolutional autoencoders to perform the

3D-CAE, NMI: 0.43%, 3D-CAE (ICA), NMI: 0.50%, 3DS-SSC, NMI: 0.50%, 3DS-SSC (ICA), NMI: 0.53%,
GroundTruth Time: 14.75 Time: 5.37 Time: 13.34 Time: 9.27
. e 7 . V1 :

3D-CAE (ICA), NML: 0.54%, C, NMIL: 0.59%, SC (ICA),
Time: 27.99 Time: 99.82 Time: 86.21
\{

Ta
3DS-SSC, NMI: 0.83%, 3DS-SSC (ICA), NMI: 0.87%,
Time: 89.77 Time: 74.22

3D-CAE, NMI: 0.71%,
GroundTruth Time: 91.31

)

’\

Fig. 9 Land cover maps on the Indian Pines, University of Pavia, and Salinas full images. The
proposed method (3DS-SSC) is compared with the 3D-CAE. The best results for NMI and time are
shown in bold font.
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clustering. We run our proposed method on the full hyperspectral images described in Sec. 4.1
and present the results in Fig. 9. The presented land cover maps of the 3D-CAE method, as
well as the given execution time (in minutes) and NMI score, were obtained from its original
manuscript. The land-cover maps are provided by the authors in the project repository avail-
able at: https://gitlab.com/jnalepa/3d-cae. For comparison purposes, we retrieve the original
land-cover maps but change the colormap to compare it with our results. In the figure, we
provide results for the full image after applying dimensionality reduction via independent com-
ponent analysis (ICA) and without any preprocessing. Besides, the shown execution time only
reflects the segmentation time and does not consider the preprocessing time. As observed, the
proposed method (3DS-SSC) achieves the best performance over the test images. Moreover,
the execution time of the proposed method 3DS-SSC is similar to 3D-CAE only when no
applying dimensionality reduction. However, if ICA is applied to the HSI, the 3D-CAE obtains
the clustering results faster in comparison with 3DS-SSC. Such behavior is expected since the
theoretical complexity analysis of the SSC-based method is O(DM?>N?); hence the computa-
tional burden is dominated by the number of pixels (MN), which remains equal after ICA
preprocessing.*”

5 Conclusion

In this paper, we proposed a subspace clustering method for hyperspectral image land-cover
segmentation. Precisely, our approach consists of using a 3D Gaussian filter to enhance the
sparse coefficients matrix, and then we obtain the segmentation by spectral clustering. The pro-
posed method provides a significant improvement when compared with other subspace cluster-
ing methods used for hyperspectral image land cover segmentation. Specifically, an OA of
80.41%, 88.26%, and 99.52% was achieved when performing the proposed 3DS-SSC method
on a selected ROI of the Indian Pines, Salinas, and University of Pavia hyperspectral images.
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