

High Dimensional Signa Processing Research Group

Optics Lens Design For Privacy-Preserving Scene Captioning

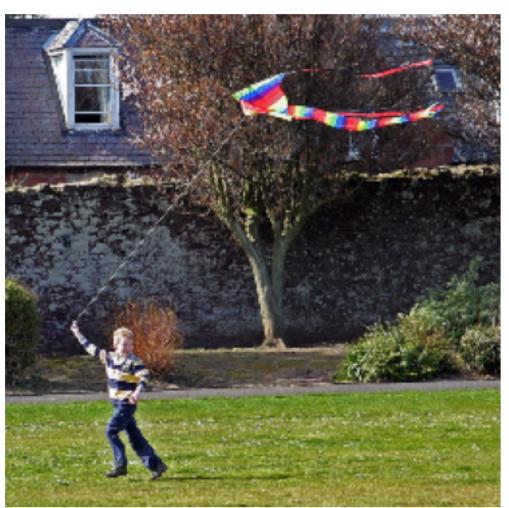
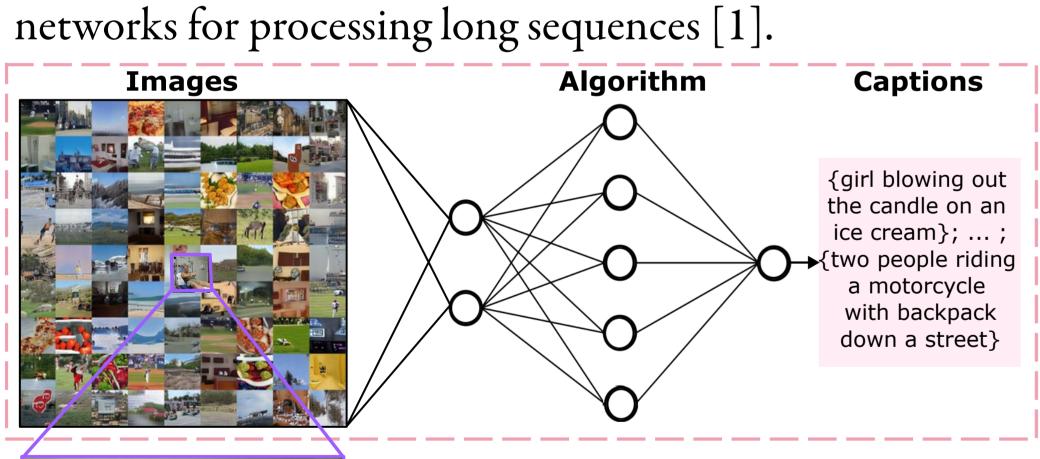

Motivation

Image captioning (IC) task consists on using an image to generate a natural language description of the scene

a girl stands on the beach with a horse Image captioning applications:

- virtual assistants
- support of the disabled



a little boy flying his kite in the yard

- image classification
- social media

Traditional IC Approaches

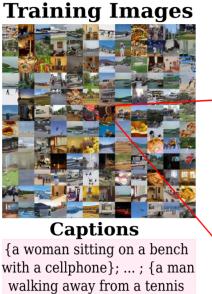
Traditional works have addressed the image captioning problem with DNN, CNN, RNN and LSTM

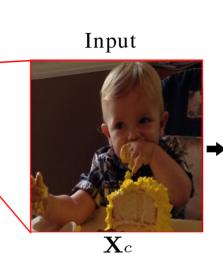
Traditional cameras are used to acquire high-fidelity images.

However, the acquired images may contain privacy-sensitive data.

Bibliography

[1] XU, Kelvin, et al. Show, attend and tell: Neural image caption generation with visual attention. En International conference on machine learning. PMLR,2015.p.2048-2057

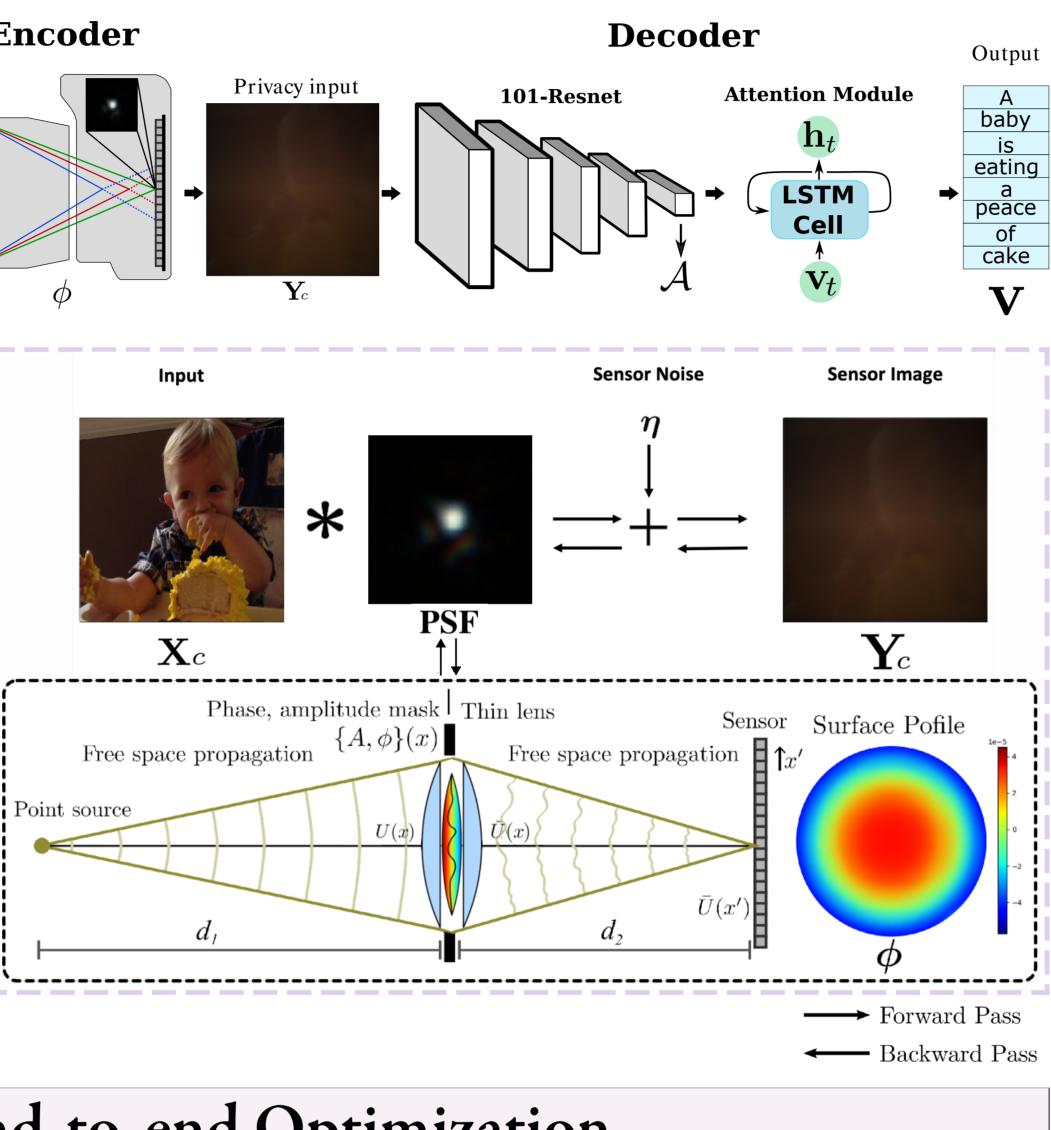

[2] Hinojosa, C, et al. Learning privacy-preserving optics for human pose estimation. In Proceedings of the IEEE/CVF International Conference onComputer Vision, pp.2573-2582.


Paula Arguello, Jhon Lopez, Carlos Hinojosa, Henry Arguello Universidad Industrial de Santander

paula2191444@correo.uis.edu.co


Model and Approach

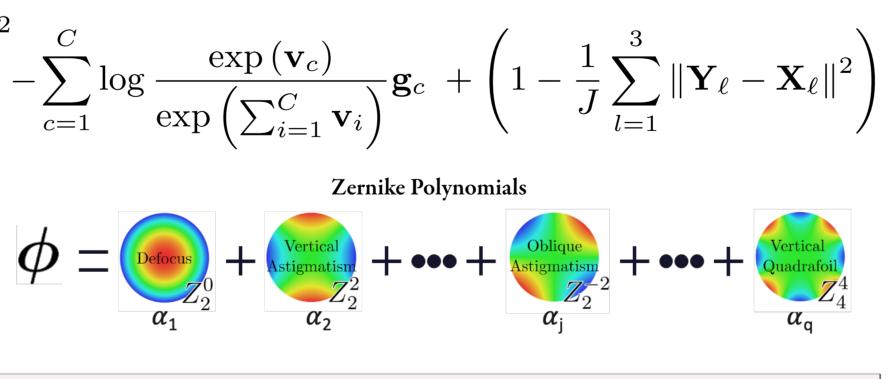
We propose an Encoder-Decoder network arquitecture optimized in an end-to-end approach to design a camera that preserves the privacy and generate captions.


Encoder

We add aberrations to the lens to obtain privacy protection and perform IC.

Our optimization process has two parts:

- Optical Encoder: hardware-level privacy protection.
- Decoder: CNN (Feature learning) + LSTM (Caption generator).



End-to-end Optimization

Formally, we formulate our optimization problem by combining two goals: to acquire privacy-preserving images and to perform IC with high accuracy.

$$\mathcal{L} = -\log(p(\mathbf{v} \mid \mathcal{A})) + \lambda \sum_{i=1}^{L} \left(1 - \sum_{t=1}^{C} \boldsymbol{\theta}_{ti}\right)^2 - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_c)}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_i\right)} \mathbf{g}_c + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^2 - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_c)}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_i\right)} \mathbf{g}_c + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^2 - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_c)}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_i\right)} \mathbf{g}_c + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^2 - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_c)}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_i\right)} \mathbf{g}_c + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^2 - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_c)}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_i\right)} \mathbf{g}_c + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^2 - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_c)}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_i\right)} \mathbf{g}_c + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^2 - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_c)}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_i\right)} \mathbf{g}_c + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^2 - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_c)}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_i\right)} \mathbf{g}_c + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^2 - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_c)}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_i\right)} \mathbf{g}_c + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^2 - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_c)}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_i\right)} \mathbf{g}_c + \left(1 - \sum_{i=1}^{C} \boldsymbol{\theta}_{ti}\right)^2 - \sum_{c=1}^{C} \log \frac{\exp(\mathbf{v}_c)}{\exp\left(\sum_{i=1}^{C} \mathbf{v}_i\right)} \mathbf{g}_c + \sum_{c=1}^{C} \exp\left(\sum_{i=1}^{C} \mathbf{v}_i\right)^2 + \sum_{c=1}^{C} \exp\left(\sum_{i=1}^{C} \mathbf{v}_i\right)^2$$

• We optimize the PSF by learning to add optical aberrations to the system [2].

Datasets and Metrics


We train our proposed approach on the COCO 2014 dataset and evaluate on the val2014 set.

Captioning	Face Recognition	Ima
To evaluate captions, we use	We implement the	To measu
the BLEU and Meteor	RetinaFace network to	degradat
metrics. With values closer	measure privacy.	peak-sigr
to 100 representing more	We measure its performance	(PSNR).
similar texts.	in terms of the ROC curve.	achieve t

nage Quality sure image ition, we use the gnal-to-noise ratio . We expect to the lowest value

Qualitative Results on Example COCO Images

Original Image

an elderly man looks at a cell phone

a man sitting at a table in a wheelchair while on a phone

an old man looks at a cell phone screen

a person in a wheelchair talking on a telephone

Privacy Validation: Face Detection

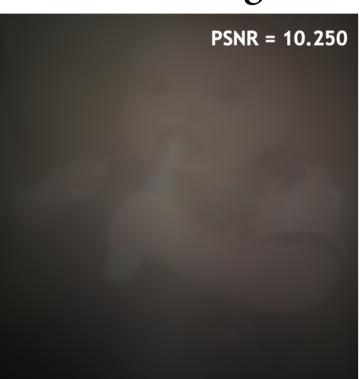
1. Non-privacy: We trained the face detection ^{1.0} model from scratch with original images. 2. Training: We trained the face detection model from scratch using blurred images. 3. Pre-trained: We evaluated the previous experiment (Non-privacy) on blurred images 4. Fine-tuning: We perform fine-tuning on the Non-privacy experiment using the blurred images.

Quantitative Comparison with Prior Works

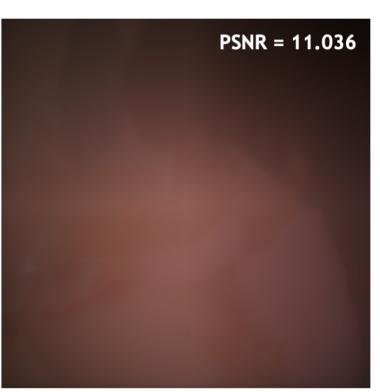
	Method	Bleu-1	Bleu-2	Bleu-3	Bleu-4	Meteor	
	BRNN	64.2	45.1	30.3	20.1	19.5	We compare our
/acy	NIC	66.6	46.1	32.9	24.6	23.7	We compare our method (2PSC)
Privacy	CutMix	64.2	-	-	24.9	23.1	
۱	AAIC	71.0	-	-	27.7	23.8	against two traditional
Non	Hard Attn	71.8	50.4	35.7	25.0	23.0	privacy-preserving
	2PSC-w	72.1	54.8	40.4	29.6	29.2	approaches: Defocus
cy	2PSC	70.7	53.5	39.4	28.9	29.0	and Low-Resolution
rivacy	Defocus	56.1	36.7	24.2	16.3	20.4	cameras.
Pı	Low-Res	57.3	37.8	25.2	17.4	20.9	

Project Page

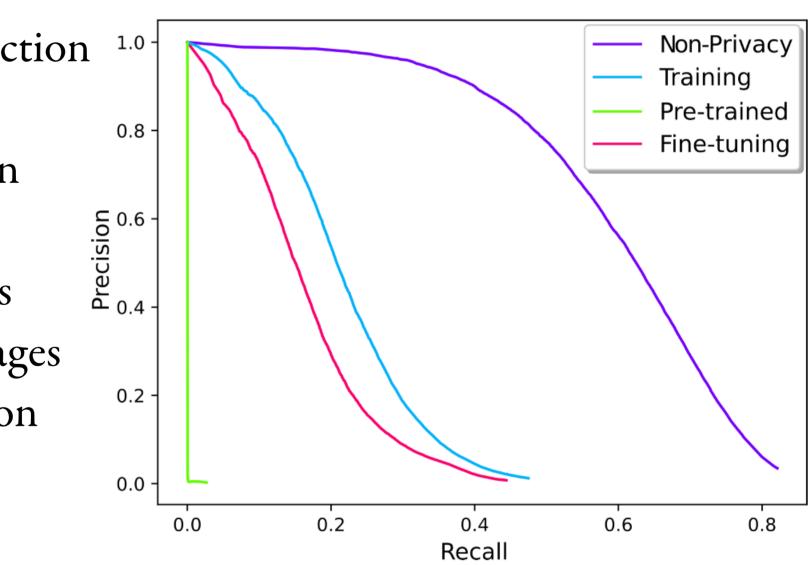
Original Image



a child holds a toothbrush in their hand



two children standing at the sink brushing their teeth


Sensor Image

a baby holding a toothbrush in its mout

a little girl is brushing her teeth in a bathroom

