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Traditional Imaging Techniques

Whiskbroom Pushbroom Spectral
Scanning Scanning Scanning Snapshot

m Traditional spectral imaging techniques relies on Nyquist—-Shannon
sampling theorem.

m Require a fixed sampling rate along the three dimensions, leading to
a and
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Imaging Sensors and Data Fusion
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Classification From Fused Data
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Classification From Fused Data
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required to reduce dimensionality
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Compressive Spectral Imaging

Compressed Measurements High Dimensional Data
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m Senses and simultaneously reduces the data dimension without any
further processing step by capturing less samples.

m Assumes that f can be represented as a sparse vector € in some
basis ¥, i.e., f = ¥0.

m CSI projections can be written in matrix notation as

y = Hf = HUO
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Compressive Spectral Imaging

Compressed Measurements High Dimensional Data

F

Reconstruction

Vectorization
TRcarrangmncnt l
Sensing Matrix H
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]
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m CSl recovery consists of finding a sparse approximation 6 by solving
6 = argmin |y — H¥|3 + 76

m Computationally expensnve optimization problem.
m GPSR!algorithm computes O(kM*N*L) operations.

1M. Figueiredo, R. Nowak, & S. Wright. Gradient Projection for Sparse Reconstruction: Application to
compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing.
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An Intuitive approach to CSI Classification
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Q. Wei, J. Bioucas-Dias, N. Dobigeon, & J. Tourneret. Hyperspectral and Multispectral Image Fusion Based
on a Sparse Representation. |IEEE Transactions on Geoscience and Remote Sensing, 2015.
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An Intuitive approach to CSI Classification
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Proposed Method for CSI Classification
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Multi-sensor
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Sensing Scheme - 3D CASSI!
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X. Cao, T. Yue, X. Lin, S. Lin, X. Yuan, Q. Dai, & D. J. Brady. Computational snapshot multispectral
cameras: Toward dynamic capture of the spectral world. IEEE Signal Processing Magazine, 33(5), 95-108.
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Sensing Scheme - Matrix Form

m The number of measurement shots is assumed to be equal to the
number of coding patterns.

m The CSI sensing scheme can be rewritten in a random projection

scheme as
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HS feature extraction

HS CSI Measures

“/'3 s-th snapshot

Extrapolation

v

HS Features

Qn

m CSI hyperspectral measurements

Yn = PnFy,

where ®;, € R %L is the coding
pattern matrix and Sy, is the number

of measurement shots acquired with
the HS CSI sensor.

Obtain the feature matrix €2y, from
the extrapolation process expressed as
wl = g LF I3 [+ 53]
where w{l is the j-th column of Qy; j

and j' are the column indexes of €y,
and Yy, respectively.
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MS feature extraction

MS CSI Measures m CSI| multispectral measurements
s _ T 5 Ym = émFma
A Rar~ %4 . .
Ve e where ®,,, € RS»*L is the coding
Ayl pattern matrix and .S, is the number

5. of measurement shots acquired with
. the MS CSI sensor.

Segmentation Map m Obtain the segmentation map by

applying the SLIC?algorithm on the
MS compressed measurements.

m Using the segmentation map, the
feature matrix Q, is obtained as
follows

MS Features

1 e
- ?:60 Ym(P )

wp
Qm m e

lR Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua & S. Siisstrunk. SLIC superpixels compared to
state-of-the-art superpixel methods. IEEE transactions on pattern analysis and machine intelligence, 2012.
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Feature Stacking
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Simulations and Results

Pavia University Dataset
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m The presented results are the m CSI compression ratio:

average of 10 trials. _ Sh + Sm
. L ’
m Training rate: select 10% of in the experiments we set

the pixels from each class.
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Pavia University
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The number of segments is fixed to for the subsequent
experiments on the Pavia University dataset.
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Pavia University
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where 3 ~ N(0, 0?) represents the noise of the system.
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Pavia University
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1J. Hahn, S. Rosenkranz, & A. M. Zoubir. Adaptive Compressed Classification for Hyperspectral Imagery.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 1020-1024. 2014.
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Pavia University

Table 1: Performance of the various classification approaches on the
Pavia University dataset.

Class Original Recontruction- ACC Proposed- Proposed-

image Fusion Framework Noisy Noiseless
Asphalt 86.80 +2.03 84.62 £ 1.05 91.20 £ 1.21 95.05 +4.62 98.63 £ 0.70
Meadows 99.07 £ 0.02  99.23 +0.22 9578 £ 0.14 98.95 £ 0.17 99.77 + 0.02
Gravel 82.39 + 1.35 80.03 £ 6.67 79.62 £ 0.31 78.04 £4.58 99.67 £ 0.16
Trees 88.61 +2.41 91.554+2.62 92.06 £ 027 86.86 +3.13 93.35 4 0.07
Bare-Soil 61.96 +5.89 7245+ 5.89 8557 +0.98 88.98 £ 6.46 98.25 + 2.47
Bitumen 93.29 +0.97 90.82+2.51 77.11 £0.16 93.70 £3.10 92.19 + 0.97

Self-Block Bricks | 90.40 + 0.20 85.14 +3.19 83.16 - 0.24 83.05 £ 1.19 97.58 + 1.03
Shadows 100.00 £ 0.00 99.89 £+ 0.15 98.47 £+ 0.66 98.42 £ 0.74 98.74 £ 0.00

OA (%) 94.51 +£0.35 94.054+0.72 90.88 4+ 0.43 94.55 £ 0.60 98.90 + 0.03

AA (%) 87.81 =126 8797 £0.01 87.87 £1.05 90.38 £0.86 97.27 £ 0.40
K 0.91 £ 0.0062 0.90 + 0.0119 0.88 &+ 0.0147 0.91 4 0.0105 0.98 £ 0.0005
Time (s) I 1.17 +0.007 87.43 £ 1.77 24.97 £2.35 0.66 £ 0.050 0.74 + 0.037
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Salinas Valley
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Salinas Valley

100 1

©
[S28

=== Original image
=@== Reconstruction-Fusion
==be Proposed-Noisy

Proposed-Noiseless

\ I I
20 40 60 80 100

Compression ratio (%)

0]
(S
[

Overall accuracy (%)
S
|

[0¢]
@]

carlosh93.github.io Simulations and Results



Conclusions

m The proposed method incorporates spatial neighboring information
by using the superpixel technique.

m Features are extracted from the HS CSI measures using an
extrapolation procedure.

m In general, the results show that performing the classification
directly with the compressive measurements provides similar
accuracy results.

m A maximum difference of just 3% in terms of OA was observed
when comparing the classification results obtained by the full 3D
data with those achieved using the CSI data fusion measurements.

Ground truth Full-Data Reconstructed-Data Noisy-compressive Compressive

Il Unlabeled [] Asphalt [l Meadows [ Gravel [l Trees [l Bare soil [l Bitumen [] Bricks [_] Shadows
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Measurements Rearrangement

Spectral signature

[ M N-
Rearrangement of the matrix Y such that the s-th row contains the
compressed measurements acquired with the s-th coding pattern ¢,. In
this figure, colors represent a specific codification, e.g, red pixels denotes
the compressed measurements acquired with the ¢, coding pattern.
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More coding patterns than measurement shots

S=6
P=9
N=M=3
3D Coded Aperture
T G1|Da| P3| Circular shitting | Po| P1| D2 Ps| b6 | D7
M | Pa|P5 | D _— D3| Dy|D5| . . . |Ds| Do| Dy
| [#7#5]#s |07 [ A
—N— s=2 s=26
s=1
Y Y
P1| Do | P3| Pa| P5| P |P7| Ps |Po P1| 1| P1|P1| P1|P1|P7| Ps | Do
Do\ D1 | Do| P3| Ds| D5 |P6| D7 | D Do| Pa| Po| Pa| Pa| Pa| Py D7 | P

Ps| Pg| D1|Po| P3| Pa|Ps| Ps|P7| Rearrangement | Pg| Py | P3| P3| P3| Ps|ds| P3| P7
D7 Ps| Po| P1| Do| D3| Du| P5| D6 - D7 Ds| Po|Pa| Pa| Pu|Pu| Pu| Py
Po| P7| Ps|Po| 1| Pa| P3| Pa| 5 s P7| Ps|Po| Ps| D5 |Ps| Ps|Ps
Idea Ps| g | 7| Ps| Po| 1| Po| P3| Py Pg| Ps| D7 | Ps| Do| P |Ps| Ps | P

s ) .
m Replace the missplaced measurement with the most correlated one.

m Put 0 and use matrix completion.
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Salinas Valley
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SLIC algorithm

m Algorithm works in the 5-D [labxy] space, where [lab] is the pixel
color vector in CIELAB color space, and xy is the pixel position.

m Given K desired equally-sized superpixels. The approximate size of
each superpixel is therefore N/Kpixels. Then, there would be a
superpixel center at every grid interval S = \/N/K.

m The algorithm choose K superpixel cluster centers
Cr. = [l ag, b, 71, yi) T with k = [1, K] at regular grid intervals S.
The search are would be 25 x 28S.

m Distance measure D, defined as

diap = /(I — 1) + (ax — a;)2 + (b, — b;)2
Aoy = /(T — 23)2 + (Y6 — ¥1)2

m
*dmy

S

m controls the compactness of a superpixel. It is usually chosen as
m = 10.
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SLIC algorithm

m Image gradients are computed as:
G(z,y) = Wz +1,y) — Iz~ Ly)|* + Lz, y +1) - La,y - 1|,

where I(x,y) is the lab vector corresponding to the pixel at position
(z,y), and || - || is the Ly norm.

Algorithm 1 Efficient superpixel segmentation

1: Initialize cluster centers Cy = [lk, ak, bx, Tk, yk}T by sampling pixels at regular grid

steps S.
2: Perturb cluster centers in an n x n neighborhood, to the lowest gradient position.
3: repeat
4:  for each cluster center Cy do
5: Assign the best matching pixels from a 25 x 25 square neighborhood around
the cluster center according to the distance measure (Eq. 1).
6: end for
7:  Compute new cluster centers and residual error £ { L1 distance between previous

centers and recomputed centers}
8: until FE < threshold
9: Enforce connectivity.
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SLIC complexity

The time complexity for the classical k-means algorithm is O(NKI)
where N is the number of data points (pixels in the image), K is the
number of clusters, and I is the number of iterations required for
convergence.

The complexity of SLIC algorithm is O(N), where N is the total number
of pixels, since it needs to compute distances from any point to no more
than eight cluster centers and the number of iterations is constant.
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Superpixels to extract MS compressed features

m Create the segmentation map using SLIC algorithm.

m Obtain all the vectors p® containing the indexes of all pixels
belonging to the superpixel e.

m The columns of the MS feature matrix ,, are created as

ne—1 (P°)
WP’ = &1=0 Ym™ " ’
m ne
where N4 is the number of segments generated by the superpixel
algorithm, (p€); denotes the [-th entry of the p® vector and wk,
represents the columns in 24, indexed by the vector p€.

m Note that the above equation simply replace all vectors in a
segment e by its mean spectral pixel. This procedure incorporates
the spatial neighboring information of the superpixel in the
classification method.
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Downsampling matrices

II,L

p is the spatial downsampling factor

q is the spectral downsampling factor
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Accuracy Metrics

m Overall Accuracy = #corrected classified site/ Total number of reference
site = 21 4 31 4+ 22/95 = 77.9%.

m Average Accuracy = is the average of each accuracy per class. sum of
accuracy for each class predicted/# of classes

m Producer’s Accuracy = correctly classified reference sites/total # of
reference site. For instance (Water): 21/33 = 64%.

m Kappa Coefficient: essentially evaluate how well the classification
performed as compared to just randomly assigning values, i.e. did the
classification do better than random.
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