
Paper ID 5401

Learning Privacy-preserving Optics 
For Human Pose Estimation

Carlos Hinojosa Juan Carlos Niebles Henry Arguello

Universidad Industrial de Santander
Stanford University

1



2



3

Not-private Private

Traditional Cameras Our Approach

Let’s perform human pose estimation!



Prior work on privacy preserving vision
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• Traditional Cameras
• Low-resolution
• De-focusing Cameras
• Depth Cameras

Instead of fixed/manually define 
the optics, we'll generate distortions 
considering both: camera’s lens and 
HPE's outputs and their interaction.
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• Traditional Cameras
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• De-focusing Cameras
• Depth Cameras

Instead of fixed/manually define 
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Computational Cameras
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Reconstructed ImageSensor Noise Sensor ImagePoint Spread Function 
(PSF)
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Non-privacy-preserving Human Pose Estimation

Standard
Camera

Backbone Human Pose 
Network

Not-private

Convolution with PSF > Sensor Image > Reconstruction

Optics (Acquisition)

Human Pose Estimation

Computer Vision (Processing)

• All Deep Optics methods rely on the same approach: to remove the aberrations from the lens to 
obtain high-quality reconstructed images.

• Deep Optics: the joint design of optics and algorithms to boost performance of the final task [1].

[1] V. Sitzmann, S. Diamond, Y. Peng, X. Dun, S. Boyd, W. Heidrich, F. Heide, and G. Wetzstein. "End-to-end optimization of optics and image processing for achromatic extended 
depth of field and superresolution imaging. ACM Transactions on Graphics.

Forward Pass
Backward Pass

Each part of the pipeline is optimized separately.
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Private

Our privacy-preserving Human Pose Estimation Approach
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✓ We rely on the converse approach: We add 
aberrations to the lens to obtain the privacy 
protection and jointly perform HPE.

Forward Pass
Backward Pass

10Designed PSF



Our privacy-preserving Human Pose Estimation Approach

Our optical system consists of a convex thin lens 
and a refractive optical  element (freeform lens) 
add-on.

Sensor Noise Sensor Image
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Our privacy-preserving Human Pose Estimation Approach

The PSF can be manipulated by modifying the 
surface profile of the freeform lens.

Sensor Noise Sensor Image

12

Surface  Profile



Our privacy-preserving Human Pose Estimation Approach

We optimize the PSF by learning to add optical aberrations to the system. 

* We learn

𝛼1 𝛼2 𝛼j 𝛼q

Surface  Profile

Zernike Polynomials
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Our privacy-preserving Human Pose Estimation Approach
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Frozen LayersFine-tuned Layers

Our privacy-preserving Human Pose Estimation Approach

Backbone (VGG19) Human Pose Estimation Network
(OpenPose)

Face KeypointsBody Keypoints
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Our Learning Approach
Our optimization problem combines two goals: to visually distort the image while still performing HPE 

with high accuracy.

Visualization of the Optimization
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Our proposed privacy 
preserving Loss

HPE Loss
HPE Parameters

Lens parameters
(Zernike Polynomials)
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Our privacy-preserving Human Pose Estimation Approach
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Dataset and Metrics

➢ Human Pose Estimation

Metric: Object Keypoint
Similarity (OKS)

➢ Face Recognition ➢ Image Quality
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COCO 2017 Dataset ArcFace trained on MS-Celeb-1M Original PSNR: 15.21 
SSIM:  0.58

Metric: area under curve (AUC) 
of the ROC curve

Metric: Peak signal-to-noise 
ratio (PSNR) and Structural 

Similarity Index (SSIM).



Quantitative Results
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Lower image quality Good HPE accuracy



Deconvolution Attack Robustness
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Distorted Image

Non-blind 
Deconvolution

Deconvolution

De-focusing 
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Deconvolution Attack Robustness
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Distorted Image
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Qualitative Results
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Qualitative Results
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Qualitative Results



Lab Experiments
Hardware Setup Deformable Mirror Experimental Results

Acquired PSFs
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Conclusions

I. We introduced a privacy-preserving end-to-end optimization framework.
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II. We design our lens by adding aberrations using Zernike Polynomials.
III. We built a proof-of-concept optical system.



Thank You!

27carloshinojosa.me/project/privacy-hpe/


