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Figure 1: Standard cameras acquire visual details from the scene that could lead to privacy issues. In this work, we propose to learn
privacy-preserving optics to perform human pose estimation (HPE). Our optimized lens incorporates several optical aberrations that degrade
the image to hide private visual details while it still captures enough visual information to perform human pose estimation.

Abstract

The widespread use of always-connected digital cameras
in our everyday life has led to increasing concerns about
the users’ privacy and security. How to develop privacy-
preserving computer vision systems? In particular, we want
to prevent the camera from obtaining detailed visual data
that may contain private information. However, we also
want the camera to capture useful information to perform
computer vision tasks. Inspired by the trend of jointly de-
signing optics and algorithms, we tackle the problem of
privacy-preserving human pose estimation by optimizing
an optical encoder (hardware-level protection) with a soft-
ware decoder (convolutional neural network) in an end-to-
end framework. We introduce a visual privacy protection
layer in our optical encoder that, parametrized appropri-
ately, enables the optimization of the camera lens’s point
spread function (PSF). We validate our approach with ex-
tensive simulations and a prototype camera. We show that
our privacy-preserving deep optics approach successfully
degrades or inhibits private attributes while maintaining
important features to perform human pose estimation.

1. Introduction
Cameras are ubiquitous and pervasive today: we have

them in our smartphones, cars, homes, and cities. The
tremendous amount of data collected from these devices en-
ables a myriad of applications using computer vision-based
technologies. We encounter such technologies in our daily
life. At hospitals, visual sensors have given rise to ambient
intelligence: physical spaces that are sensitive and respon-
sive to the presence of humans. In this scenario, visual sys-
tems enable more efficient clinical workflows and improved

patient safety in intensive care units and operating rooms
[15]. In the context of gaming, camera devices use action
and gesture recognition to create an interactive game expe-
rience [44, 50]. However, with all these cameras collecting
images in an always-connected digital world, a big chal-
lenge has been raised: how to develop privacy-preserving
computer vision systems? Specifically, we want to pre-
vent the camera system from obtaining detailed visual data
containing private information (such as faces), desirably at
the hardware level. Simultaneously, we want the system to
capture useful information that enables understanding sur-
rounding objects and ongoing events.

For decades, cameras have been engineered to imitate
the human vision system. Once the optical system is fixed,
we use the cameras to acquire multiple high-fidelity im-
ages. Then we tune computer vision algorithms to opti-
mize their accuracy at specific tasks. Most computer vi-
sion applications, even privacy-preserving approaches, rely
on such a traditional digital imaging system. For example,
one can detect privacy-sensitive everyday situations and en-
able or disable an eye tracker’s first-person camera using
a mechanical shutter [43]. However, such a method per-
forms software-level processing on high-resolution videos
acquired by traditional cameras, which may already contain
privacy-sensitive data that could be exposed in an attack.

Instead of using traditional cameras to acquire the data
and then using software-level processing to preserve pri-
vacy, a better idea would be to design a camera that directly
obviates sensitive data while still obtaining useful informa-
tion for a given task. Recently, thanks to various software
and hardware advances, the entire system (camera’s optical
elements and image processing algorithms parameters) can
be optimized in an end-to-end fashion, enabling the design
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of domain-specific computational cameras [8, 24, 41, 18].
In the literature, the end-to-end optimization of domain-
specific computational cameras is known as Deep Optics.
Prior work in this line aims to improve the optical elements
to acquire high-resolution/high-fidelity images and simulta-
neously improve the performance of computer vision algo-
rithms. Here, we are interested in extending this philosophy
to design privacy-preserving optical systems.

In this paper, we design a privacy-preserving computa-
tional camera via end-to-end optimization to capture use-
ful information to perceive humans in the scene while hid-
ing privacy-sensitive information. Since many computer vi-
sion applications need to analyze humans as the first step
in their frameworks, we are interested in jointly optimiz-
ing a freeform lens (the spatially varying surface height of a
lens) together with a human pose estimation (HPE) network
to develop a privacy-preserving HPE system. The contri-
butions of our work are the following: (i) We introduce a
privacy-preserving end-to-end optimization framework to
extract useful information from the scene yet preventing
the imaging system from obtaining detailed and privacy-
sensitive visual data. (ii) Using our end-to-end optimiza-
tion framework, we optimize an optical encoder (Hardware-
level protection) with a software decoder (convolutional
neural net) to add a visual privacy protection layer to HPE.
We jointly optimize the optical elements of the camera lens
and fine-tune the backbone of a HPE network. We show
that it is not necessary to retrain the HPE network layers
to achieve privacy preservation. (iii) We perform extensive
simulations on the COCO dataset to validate our proposed
privacy-preserving deep optics approach for HPE. (iv) We
built a proof-of-concept optical system. Our experimental
results in hardware match the simulations.

In principle, our main objective is to show the benefits of
a deep-optics-inspired approach to develop robust privacy-
preserving vision algorithms. We design the optical system
lens to degrade the image quality and obscure sensitive pri-
vate information, which is opposite from the traditional ap-
proach of improving the imaging quality. We do not aim
to develop a new HPE network. Instead, we add a visual
privacy protection layer to an already trained HPE network
using the designed optics and fine-tune the backbone layers.
Our experiments show that there is a trade-off between the
attained scene degradation and the HPE precision.

2. Related work
Current computer-vision algorithms for human pose es-

timation (HPE) do not consider privacy and rely on high-
resolution images. Most existing privacy-preserving com-
puter vision approaches tackle the action recognition task,
while privacy-preserving HPE is not widely explored yet.

Human Pose Estimation. There are multiple ap-
proaches for addressing the multi-person HPE problem. Re-

cently, convolutional networks [28, 32, 45, 46, 47, 48] have
shown superior performance over prior methods such prob-
abilistic graphical models or pictorial structures [33, 54,
55]. In general, there are two broadly used approaches
for tackling the multi-person HPE problem [31]: bottom-
up, where the body keypoints are predicted first and then
grouped into person instances [49, 53]; and top-down,
where the human bodies are detected first and then, for each
detected body, joints are obtained via single-person pose
estimation. Among bottom-up representative works, the
OpenPose architecture [5] proposes to link the keypoints
that are likely to lie in the same person using part-affinity
fields. We build our privacy-preserving HPE approach on
top of the OpenPose model.

Privacy-preserving Computer Vision. We divide prior
work into software-level and hardware-level protection.
The latter is considered more robust to attacks.
Software-level Privacy Protection. Most prior privacy-
preserving computer vision methods operate after a high-
fidelity image has been acquired; hence they only provide
software-level privacy protection. These methods rely on
domain knowledge and hand-crafted approaches, such as
pixelation, blurring, and face/object replacement, to protect
sensitive information [1, 9, 30]. This can be useful in practi-
cal settings when we know in advance what to protect in the
scene. More recent works propose a more general approach
that learns privacy-preserving encodings through adversar-
ial training [4, 34, 52]. They actively learn to degrade or
inhibit private attributes while maintaining important fea-
tures to perform inference tasks. Unfortunately, there is
no prior work in software-level privacy protection for HPE.
The closest works study human fall detection [2] and body
posture [12]. While these software-level approaches pre-
serve privacy in the final application, the acquired images
still do not protect privacy.
Hardware-level Privacy Protection. Hardware-level pri-
vacy protection approaches rely on the optical system to
add a layer of security by removing sensitive data during
image acquisition. Prior work uses low-resolution cameras
to capture videos and avoid the unwanted leak of identity in-
formation of the human subjects [37, 38]. One can also se-
lect a defocus blur to provide a certain level of privacy over
a working region within the limits of sensor size [35, 36];
however, only using optical defocus for privacy may be sus-
ceptible to reverse engineering, as we will show in Section
4. More recently, a coded aperture camera is used to directly
perform human action recognition from encoded measure-
ments without requiring image restoration as an interme-
diate step [51]. The only prior work on privacy-preserving
HPE uses low-resolution depth images as input to an end-to-
end framework that integrates a multi-scale super-resolution
network with a 2D HPE network [42]. All these methods
assume that the attacker has no access to the hardware. We
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Figure 2: Our proposed end-to-end framework. The optical-encoder consists of a camera with a convex thin lens and a refractive optical
element add-on. We achieve privacy-protection by jointly optimizing the optics (by adding aberrations directly on the freeform lens surface)
and fine-tuning some layers of the backbone network while keeping the human pose estimation network frozen.

propose a hardware-level privacy-preserving HPE frame-
work: we leverage Deep optics to design an optical lens
that obscures private information while enabling HPE.
Deep Optics. Traditionally, the optics system and im-
age processing algorithms have been developed separately.
First, the optical elements are configured and fixed; and sec-
ond, the parameters in the image processing algorithm are
tuned to perform a specific task [26]. Recently, the idea
of jointly optimizing the optical system and the image pro-
cessing algorithm has drawn broad attention and is known
as Deep Optics [41]. This idea has been successful in color
imaging and demosaicing [6], extended depth of field and
super-resolution imaging [41], monocular depth imaging
[8, 16], image classification [7], time-off light imaging [23],
high dynamic range imaging [24], and computational mi-
croscopy [17, 27]. Their philosophy is to enhance the imag-
ing quality to improve the performance of computer vision
algorithms. We introduce a radically opposite approach: we
design the optical elements to degrade the image quality and
obscure private information while still enabling HPE.

3. Privacy-preserving Pose Estimation
We are interested in the privacy-preserving human pose

estimation task. Our general strategy is to optimize the cam-
era optics and the human pose estimation network jointly
to achieve privacy protection via image degradation. The
key idea is that we can modify the camera lens to degrade
the image in such a way that the identity of the subjects
is obscured while preserving important features for pose
estimation. To achieve this, we introduce the end-to-end
framework depicted in Figure 2. Our method has two key
components: an Optical Encoder (Section 3.1) and a CNN
Decoder (Section 3.2). The Optical Encoder module is
parametrized appropriately to allow for learning of the cam-
era lens. The CNN Decoder performs the task of human
pose estimation on our optically degraded image. During
training, we optimize these two modules jointly to obtain
our privacy-preserving pose estimation system. The result
of the training process is two-fold: the camera lens param-

eters α∗ and the convolutional network for pose estimation
h∗. To achieve this, we can formulate a loss function for
learning that combines our two goals:

α∗, h∗ = argmin
α,h

LT (h) + LP (α). (1)

where LT is the loss function for the pose estimation
task, and LP is a loss function that encourages privacy-
preservation. During inference, we can deploy our system
in hardware by constructing a camera lens using the optimal
parameters α∗ that acquires degraded images on which our
network h∗ can perform pose estimation. One could also
deploy a less-secure system as a software-only solution, by
implementing the image degradation post-acquisition. The
rest of this section describes the details of our framework.

3.1. Optical Encoder

The Optical Encoder module in Figure 2 is responsible
for the image acquisition process in our privacy-preserving
human pose estimation (HPE) system. As outlined earlier,
our strategy for privacy-preservation is to modify the op-
tical system of the camera during training. The goal is to
produce images that visually obscure the identity of the per-
son but still preserve important features for pose estimation.
We achieve this by adopting the deep optics philosophy: we
use an end-to-end training approach to jointly optimize the
camera optics and the HPE network. However, our moti-
vation diverges from prior deep optics [24, 41]: we want to
optimize the camera optics by adding optical aberrations di-
rectly on the surface of the thin lens (freeform lens) instead
of removing them. Furthermore, unlike prior deep optics
methods, we do not perform image reconstruction and in-
stead we work directly with the acquired low-quality image.

The key to enable such end-to-end learning is to appro-
priately parametrize the camera lens so that we can perform
back-propagation. Note that the training signal to optimize
the camera optics will back-propagate from the privacy-
preserving loss LP (α) (Section 3.3). There are three key
parts to our parametrization: the lens surface profile ϕ,
which we write in terms of Zernike coefficients α, and the
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corresponding point spread function (PSF) H for the cam-
era lens. First, we describe the relationship between ϕ and
H by the image formation Model below. Then, we intro-
duce the parametrization of the lens surface profile ϕ in
terms of coefficients α for the Zernike polynomials.

Image Formation Model. We derive a wave-based im-
age formation model for natural scenes to write the PSF H
in terms of ϕ, assuming spatially incoherent light. Simi-
lar to recent works on end-to-end camera designs [7, 41],
we model the light transport in the camera using a differen-
tiable Fourier optics model [13].

Figure 2 depicts our optical system, which consists of a
convex thin lens with a custom refractive optical element
add-on with surface profile ϕ. Similar to a photographic
filter, such an optical element is mounted directly in front
of the lens. The response of the camera system to a point
light source is described by the point spread function (PSF)
created by the lens. The sensing process can be modeled as
a 2D convolution operation between the scene and PSF as

y = g(H ∗ x) + η, (2)

where x ∈ Rw×h
+ is the scene and it is represented as a dis-

crete color image with w×h pixels, and each pixel has value
in [0, 1]; η represents the Gaussian noise in the sensor, and
g(·) is the camera response function, which we assume lin-
ear. This model also assumes that the PSF is shift-invariant,
but the model could be generalized.

Assuming that the thin lens has a focal length f at a dis-
tance d2 from the sensor, the relationship between the in-
focus distance and the sensor distance in the paraxial ray
approximation is given by the thin-lens equation: 1/f =
1/d1 + 1/d2. Therefore, an object at a distance d1 in front
of the lens appears in focus at a distance d2 behind the lens.
Assuming that the scene is at optical infinity, we first propa-
gate the light emitted by the point, represented as a spherical
wave, to the lens. The complex-valued wave field immedi-
ately before the lens is given by:

U(x, y) = exp
(
ik
√

x2 + y2 + z2
)
, (3)

where k = 2π/λ is the wavenumber. The refractive opti-
cal element first delays the phase of this incident wavefront
by an amount proportional to the surface profile ϕ of the
optical element at each point (x, y). Equivalently, the op-
tical element may be represented by a multiplicative phase
transformation of the form

tϕ(x, y) = exp(ik(n(λ)− 1)ϕ(x, y)), (4)
where n(λ) is the wavelength-dependent refractive index of
the optical element material.

The light wave continues to propagate to the camera lens,
which induces the following phase transformation [13]

tl(x, y) = exp

(
−i

k

2f
(x2 + y2)

)
. (5)

Considering that a lens has a finite aperture size, we use a
binary circular mask A(x, y) with diameter D to model the
aperture and block light in regions outside the open aper-
ture. To find the electric field immediately after the lens, we
multiply the amplitude and phase modulations of the refrac-

tive optical element and lens with the input electric field:
Ũ(x, y) = A(x, y)tϕtl(x, y)U(x, y). (6)

Finally, the field propagates a distance d2 to the sensor with
the exact transfer function [13]:

Td2(fx, fy) = exp
[
ikd2

√
1− (λfx)2 − (λfy)2

]
, (7)

where (fx, fy) are spatial frequencies. This transfer func-
tion is applied in the Fourier domain as:

Ū(x′, y′) = F−1
{
F

{
Ũ(x, y)

}
· Td2(fx, fy)

}
, (8)

where F denotes the 2D Fourier transform. Since the sensor
measures light intensity, we take the magnitude-squared to
find the values of the PSF H at each position (x, y) as:

H(x′, y′) = |Ū(x′, y′)|2. (9)
Lens Parametrization. We parametrize the lens surface

profile ϕ with the Zernike basis, which leads to smoother
surfaces, as

ϕ =

q∑
j=1

αjZj , (10)

where Zj is the j-th Zernike polynomial in Noll notation,
and αj is the corresponding coefficient [3]. Each Zernike
polynomial describes a wavefront aberration; hence the sur-
face profile ϕ is formed by the linear combination of all
aberrations. In this regard, the optical element parameter-
ized by ϕ can be seen as an optical encoder, where the co-
efficients αj determine the data transformation. Therefore,
different from common deep optics approaches, our end-to-
end training finds a set of coefficients α∗ = {αj}qj=1 that
provides the maximum visual distortion of the scene but al-
lows to extract relevant features to perform HPE.

3.2. CNN Decoder

To perform HPE, we use the OpenPose network architec-
ture [5]. The OpenPose network is composed of a VGG-19
[40] backbone, and two branches of convolutional layers.
The backbone network extracts features from an image of
size w × h, which are then fed into the two branches. One
branch predicts a set of confidence maps, where each map
represents a specific body part location; the second branch
predicts a set of Part Affinity Fields (PAFs), where each
field represents the degree of association between parts.
Successive stages are performed to refine the predictions
made by each branch. Finally, the confidence maps and the
PAFs are parsed by greedy inference to produce the 2D lo-
cations of body keypoints for each person in the image [5].

HPE Loss Function LT . The OpenPose loss accounts
for both the body and face keypoints to improve human pose
estimation in an image. Let S = {S1,S2, · · · ,SE} be the
set of confidence maps, where each map Se ∈ Rw×h rep-
resents a specific keypoint location, e ∈ {1, · · · , E}. Simi-
larly, let V = {V1,V2, · · · ,VC} be the set of PAFs, where
each affinity field Vc ∈ Rw×h×2 represents the degree of
association between the keypoints, and c ∈ {1, · · · , C}.
We split the confidence maps as S = {SB ,SF }, where
SB ⊆ S contains the maps Se for the body keypoints, and
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SF ⊆ S contains the maps Se for the face keypoint loca-
tions. Similarly, we split the PAFs as V = {VB ,VF }, where
VB ⊆ V contains the affinity fields Vc of the body limbs,
and VF ⊆ V contains the affinity fields Vc that represent
the degree of association between two face parts. We define
the loss function for a subset of keypoints χ at stage τ is

Fτ (χ) =

|χ|∑
δ=1

∑
p

B(p) · ∥χτ
δ (p)− χ∗

δ(p)∥22 (11)

where |χ| is the number of keypoints in the subset. For in-
stance, if χ = SB then |χ| will be the total number of body-
related confidence maps. B is a binary mask with B(p) = 0
when the annotation is missing at the pixel p, and χ∗

δ de-
notes the groundtruth. Then, the overall OpenPose LT is

LT =

Γ1∑
τ=1

Fτ (VB)+Fτ (VF )+

Γ1+Γ2∑
τ=Γ1+1

Fτ (SB)+Fτ (SF ), (12)

where Γ1 and Γ2 denote the total of PAF and confidence
map stages, respectively.

3.3. Privacy-preserving Loss Function LP

Defining a privacy-preserving loss function is not a
straightforward task, and the definition will depend on con-
crete application contexts. There are various privacy-related
attributes, such as the face, race, gender, or age [29]. How-
ever, the face is the main attribute we would like to obscure
in our privacy-preserving vision task. Therefore, we define
the privacy-preserving loss taking into account the face key-
points detection in the images. In principle, we are not inter-
ested in obtaining an accurate localization of face keypoints,
and we would like to obscure such face regions from the
image. Then, we only want to preserve the body keypoints
and let the end-to-end training degrade all the image’s spa-
tial details (including the faces). To further enforce image
degradation, we maximize the ℓ2 norm error between the
original image x and the acquired image y, defined as

LE =
∑
b

1

2
∥yb − xb∥22, (13)

where the subscript b denotes the color bands of the RGB
images. We define the privacy-preserving loss function as

LP = −
Γ1∑
τ=1

Fτ (VF )−
Γ1+Γ2∑
τ=Γ1+1

Fτ (SF )− β2LE . (14)

Finally, considering Eq. 1, we compute the total loss at the
end of our proposed framework, as follows

L = LT+LP = β1

( Γ1∑
τ=1

Fτ (VB)+

Γ1+Γ2∑
τ=Γ1+1

Fτ (SB)
)
−β2LE . (15)

3.4. Training Details

Optics Layer Simulation. We simulate a sensor with
pixel size of 3.40µm and resolution of 864×864 pixels. We
use the first q = 350 Zernike coefficients in Noll notation to
shape the surface profile ϕ. The fourth Zernike coefficient
(the defocus term) is initialized, such that the lens has a fo-
cal length of f = 25mm. The optical element is discretized
with a 3.40µm feature size on an 864× 864 grid.

Fine-tuning. We are interested in adding a privacy pro-
tection layer to a pre-trained OpenPose network. Hence,
to perform training we assume an aberration-free freeform
lens and use the pretrained weights of a Tensorflow imple-
mentation of OpenPose [22] as a starting point. After ini-
tialization with the pre-trained weights, we freeze the two
branches of OpenPose and only fine-tune some layers of
the VGG-19 backbone with a lower learning rate to learn
extracting human body features from the private image y.
Figure 2 illustrates the frozen and fine-tuned layers.

Training. During training, we first perform one forward
pass through the network by convolving the images from the
training set with the PSF H to obtain the optically-encoded
sensor image y, as described by Eq. 2. Next, the VGG-
19 backbone extracts features from y, and then the features
are fed into the two branches of the OpenPose architecture.
Now, we split the confidence maps S and PAFs V into body-
related and face-related features as described in the Section
3.2, and compute the loss described in Eq. 15. After com-
puting L, we use the automatic differentiation capabilities
of Tensorflow to back-propagate the error and update the
parameters of the VGG-19 backbone and the coefficients αj

that model surface profile ϕ of the lens using Eq. 10. We
trained the end-to-end model using Adam optimizer with a
batch size of 22 and an initial learning rate of 2× 10−5. We
applied an exponential learning rate decay with a decay fac-
tor of 0.666 that is triggered after 15K, 20K, 25K, 28K, and
35K training steps. We trained the network for 50K steps
(gradient updates), which took about 24 hours on a Tesla
V100-SXM2 GPU with 32 GB of memory.

4. Experimental Results

The goal of our work is privacy-preserving pose estima-
tion, so evaluate performance in the task of human pose esti-
mation (HPE), as well as the level of privacy protection. We
evaluate HPE following standard practice. To evaluate pri-
vacy protection, we use two indirect proxies: image degra-
dation and face recognition. Our experiments are performed
on two implementations of our framework: a software-only
simulation and a hardware prototype built in the lab.

Dataset, Metrics and Evaluation Method. We train
our proposed end-to-end approach on the COCO [21] 2017
keypoints dataset and evaluate our approach on the val2017
set. To quantitatively evaluate HPE, we use the stan-
dard COCO evaluation metric: Object Keypoint Similar-
ity (OKS) [21]. Since we aim at preserving privacy, we
expect the estimation of face keypoints to degrade, while
we want to maintain good performance on the estimation
of body keypoints. To make a fair comparison, we sightly
modify the COCO evaluation script to not consider the face
keypoints. We report the standard average precision (AP)
and recall (AR) scores: AP, AP50, AP75, APM (medium
objects), APL (large objects), and AR. To measure image
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Figure 3: Experiment I. Comparison of different privacy-
preserving losses. The performance of the proposed end-to-end
framework using different losses is depicted with different colors.

Figure 4: Experiment II. Face recognition performance on images
acquired with our optimized lens.

degradation, we use the peak-signal-to-noise ratio (PSNR)
and the structural similarity index measure (SSIM) [19].
Large values of PSNR or SSIM indicate high quality. Thus,
we expect to achieve the minimum PSNR or SSIM values
while achieving high AP on the human pose keypoints. We
report the average PSNR and SSIM over all images from
the validation set. Finally, we use an implementation of the
face recognition network ArcFace [10] to measure privacy.
We train ArcFace on Microsoft Celeb (MS-Celeb-1M) [14]
and test on LFW [20], AgeDB-30[25] and CFP-FP [39]. We
measure face recognition performance in terms of the area
under curve (AUC) of the ROC curve.

4.1. Simulation Experiments

Ablation study. We conduct five ablation experiments
and investigate different configurations for our architecture.

Experiment I explores two alternative formulations for
the privacy-preserving loss LP . We define such losses as:

LP1 = −β3

( Γ1∑
τ=1

Fτ (VF )−
Γ1+Γ2∑
τ=Γ1+1

Fτ (SF )
)
− β2LE (16)

LP2 = −
Γ1∑
τ=1

Fτ (VF )−
Γ1+Γ2∑
τ=Γ1+1

Fτ (SF )− β4LF , (17)

where β3 > 1,
LF = Simcos(af (x), af (y)), (18)

Simcos denotes the cosine similarity, and af (·) stand for the
ArcFace model [10]. To compute LF , we use the pretrained
ArcFace model on faces extracted from the input image x

and distorted image y. See Section 2 of supplementary ma-
terial for more details. Figure 3 shows performance ver-
sus training step obtained by training with each of the three
privacy-preserving losses (each in a different color). Perfor-
mance is measured under three viewpoints: Face recogni-
tion AUC, HPE AP, and image degradation SSIM. We show
with dashed lines the upper bound for each metric. Face
recognition AUC is calculated on the LFW dataset. To do
this, for each privacy-preserving HPE model trained with
a specific privacy loss, we first generate a “private” MS-
Celeb-1M dataset and train the ArcFace model – this equiv-
alent to an attack that can obtain an annotated set of face
images acquired with our camera. We do not train ArcFace
from scratch; instead, we load the pretrained weights and
fine-tune the model using the “private” set. We observe that
LP1

produces highly distorted images, and the face recogni-
tion performance is poor; however, the HPE AP is the low-
est in comparison with the other losses. LP2 obtains the best
HPE performance, but image distortion decreases slowly
and seems to stabilize after 25K training steps; hence the
face recognition achieves good performance, which is not
desired. Our proposed privacy-preserving loss LP achieves
good HPE results and low face recognition performance.

In Experiment II, we test the face recognition perfor-
mance on images acquired using our proposed privacy-
preserving lens on the LFW and AgeDB-30 datasets. Figure
4 show the ROC curves for each testing approach: “No-
privacy Model” uses the pretrained ArcFace model on the
original images; “Pretrained model” uses the pretrained Ar-
cFace model on the private version of each dataset; “Trained
model” uses an ArcFace model trained from scratch us-
ing the private version of the MS-Celeb-1M dataset; “Fine-
tuned Model” uses a pretrained ArcFace model fine-tuned
with the private version of the MS-Celeb-1M dataset. As
observed, the fine-tuned model performs best on the LFW
dataset compared to the other testing approaches. How-
ever, the ArcFace model performance is similar to a ran-
dom classifier on the AgeDB-30 dataset for all the testing
approaches. The ArcFace model does not perform well on
the images generated by our proposed lens design. See re-
sults with the CFP-FP dataset in our supplementary.

In Experiment III, we optimize for q = 350 Zernike co-
efficients and do not fine-tune the HPE backbone layers. Ta-
ble 1 shows that the optimization did not converge to an op-
timal point; hence the network is unable to estimate the pose
in the degraded image even after few training steps. After
training, we obtain a mean PSNR of 11.452 and SSIM of
0.496. In experiment IV, we fix the number of Zernike co-
efficients to q = 350 and fine-tune the first 10,20, and 40
layers of the VGG-19 backbone. Fine-tuning the first 20
layers leads to the best results in AP while achieving low
PSNR and SSIM values. In experiment V, we fix the layers
to be fine-tuned in the network and train using a different
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Experiment Fine-tuned
Layers

Zernike
Coefficients PSNR SSIM AP

III No Fine-tune 350 11.452 0.496 -

IV
10 350 14.598 0.565 0.263
20 350 14.851 0.567 0.302
40 350 14.577 0.562 0.251

V
20 15 16.692 0.582 0.168
20 50 16.328 0.579 0.231
20 150 16.142 0.571 0.258

Table 1: Ablation study of our method on COCO val2017 dataset
using the OpenPose network. The configuration shown in bold
leads to the best results in terms of image degradation and AP.

Method PSNR SSIM AP AP50 AP75 APM APL AR

OPPS [5] - - 0.421 0.655 0.439 0.444 0.428 0.506

Defocus Lens[35] 16.614 0.598 0.197 0.432 0.155 0.126 0.299 0.256
Low-Resolution[38] 18.54 0.476 0.067 0.197 0.032 0.031 0.123 0.106

PP-OPPS (Ours) 14.851 0.567 0.302 0.555 0.266 0.276 0.359 0.363

Table 2: Comparisons on the COCO validation set. We compare
our method against two traditional privacy-preserving approaches:
Defocus and Low-resolution cameras. The PP prefix stands for
our proposed privacy-preserving approach.

number of Zernike coefficients. Increasing the number of
Zernike coefficients leads to better encoding; hence AP in-
creases while PSNR and SSIM decrease. However, memory
consumption also increases linearly since we need to store
all the Zernike basis. In the following experiments, we use
the best configuration from Table 1 (shown in bold font).

Comparison with other methods. Privacy-preserving
HPE methods are not well explored in the literature. There-
fore, to compare our method, we adapt the ideas of using
low-resolution cameras [38] and cameras with a defocus
lens [35] to provide visual privacy protection. We simu-
late both types of cameras, fix the optics so that the lens
is not optimized during learning, and fine-tune the first 20
trainable layers of the HPE backbone network similarly to
our proposed approach. To implement the low-resolution
approach, we use images with a resolution of 32 × 32. We
compare our method with a Tensorflow implementation of
OpenPose (OPPS) [5] architecture [22]. Table 2 reports the
COCO keypoints evaluation results and the average of the
PSNR and SSIM image quality metrics among all images
from the COCO validation set. In the table, PP-OPPS stands
for our proposed privacy-preserving approach for OPPS.
The simple defocus lens achieves an AP of 0.197 on low-
quality images with an average PSNR of 16.614 and SSIM
of 0.598. Our proposed optimized lens leads to better re-
sults since it adds more aberrations to the optical system
than the defocus lens approach, which only incorporates
one aberration (defocus). The low-resolution approach does
not work well with our proposed end-to-end training ap-
proach since it leads to the lower average SSIM value and
the lowest performance in terms of keypoints AP. See our
supplementary for results when using other HPE network.

Robustness to Deconvolution. We investigate the ro-
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Figure 5: Qualitative results on example COCO images. We com-
pare our proposed privacy-preserving pose estimation results using
the optimized lens with the Non-privacy approach using a standard
lens. The last column depicts a failure case where we fail to esti-
mate the pose of far distant people.

bustness of our proposed lens design to deconvolution at-
tacks. In the worst scenario, we assume that an attacker
knows the set of Zernike coefficients that form the surface
profile ϕ, i.e., the PSF is known. Then, the attacker could
perform a non-blind deconvolution to reveal the identity of
a person within the scene. Figure 6 illustrates our results.
Although the defocus lens seems to obscure visual details,
it is susceptible to reverse engineering, and the identity of
people can be revealed using Wiener deconvolution [11].
The deconvolution approach does not work well for our
proposed lens design as it has significantly more aberra-
tions, making it more robust. In a more realistic scenario,
an attacker can access a large collection of blur images ac-
quired with our proposed camera but does not know the
PSF. We already explore this scenario (blind-deconvolution)
and present some results in Section 5 of our supplementary.

Qualitative results. Figure 5 shows a visual comparison
of our proposed method using the optimized lens against the
results from the original OpenPose (No-privacy pose esti-
mation), which works on images acquired with a standard
lens. Our proposed privacy-preserving approach achieves
good human pose estimation on degraded images. The last
column shows an example failure case of our method; as
observed, the method fails to estimate distant people’s pose.
However, when a person is far from the camera, less is the
privacy concern; hence the privacy protection given by our
method is still useful in most cases.

2579



Standard Lens Defocus Lens Deconvolution Our Opt. Lens Deconvolution

Figure 6: Non-blind deconvolution of private images acquired
with a defocusing lens compared to our lens. Our image is more
robust to deconvolution even when the PSF is know.

Figure 7: (Top) Experimental Hardware Setup for our privacy-
preserving approach. (Bottom) Qualitative results on some exam-
ple images acquired by the prototype camera.

4.2. Hardware Experiments

To experimentally evaluate the effectiveness of our pro-
posed privacy-preserving approach, we built the proof-of-
concept optical system in Figure 7. The prototype com-
prises a main objective lens coupled with a 4f system,
which has a phase modulating element at 2f . Our Camera
is a CANON EOS REBEL T5i placed at the optical setup’s
image plane. The intermediate image plane is formed by an

Total Images Fine-tuning set Testing set AP AP50 AP75 AR

300 150 150 0,562 0,731 0.532 0.584

Table 3: Quantitative evaluation of acquired images in our Lab.

8mm objective lens (NAVITAR MVL8M23), which is re-
layed by a pair of 75mm Fourier transforming lenses (Thor-
labs AC254-075-A-ML). Using a beamsplitter (BS, Thor-
labs CCM1-BS013), we placed a deformable mirror (DM,
Thorlabs DMP40-P01) at the pupil plane at a distance of
2f = 150mm from the intermediate image plane. Finally,
the camera detector is placed at a distance of 2f = 150mm
from the deformable mirror. We captured a series of images
of a point white light source using a pinhole of 20 µm to
calibrate the acquired PSFs.

After calibrating the system, we obtain a Non-optimized
PSF, i.e., we have an optical system that captures non-
privacy RGB images. Then, we simulate the system us-
ing our proposed approach to obtain the optimized Zernike
polynomials and setup the deformable mirror. The de-
formable mirror uses the Zernike polynomials to deform its
surface, thus modifying the incident light wavefront. The
optical system with the deformable mirror creates an opti-
mized PSF that closely resembles the simulated PSF and
captures private images, see Fig. 7. We use a small set of
captured measurements to fine-tune the HPE network for a
few epochs.Finally, we run human pose estimation on our
images using the trained privacy-preserving HPE network.
Figure 7 shows predicted poses on the acquired private and
non-private images. Table 3 presents a quantitative evalua-
tion on a small testing set captured in the laboratory.

Limitations. The deformable mirror is the main limi-
tation of the proof-of-concept optical system. This device
can only use q = 15 Zernike Polynomials, which limits the
level of distortion of the scene. However, results show that
our acquired images successfully protect personal identity
by distorting the face. We also performed a quantitative
evaluation on a small set of images acquired in the lab. Due
to pandemic restrictions, we cannot acquire a larger scale
image dataset in the lab. For now, our small scale tests show
results consistent with our extensive experiments.

5. Conclusion

We presented a privacy-preserving approach for pose es-
timation that consists of an optical encoder that obscures
sensitive private information and a decoder that performs
HPE on degraded images. We extensively evaluated and
experimentally validated our approach on simulations and a
hardware prototype. Our qualitative and quantitative results
indicate a trade-off between image degradation and HPE ac-
curacy. We plan to extend our method to other computer vi-
sion tasks. We will also consider more complex PSFs, such
as depth-invariant PSFs, which may improve the HPE of far
distant people.
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[30] José Ramón Padilla-López, Alexandros Andre Chaaraoui,
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