
Supplementary Material
PrivHAR: Recognizing Human Actions From

Privacy-preserving Lens

Carlos Hinojosa1,2,∗, Miguel Marquez1, Henry Arguello1, Ehsan Adeli2,
Li Fei-Fei2, and Juan Carlos Niebles2

1 Universidad Industrial de Santander, Colombia
2 Stanford University, USA

https://carloshinojosa.me/project/privhar/

In this supplementary document, we include:

1. Light propagation and optics modeling.
2. PSF frequency analysis.
3. Face recognition results.
4. Precision-recall and ROC curves.
5. Deconvolution attacks details.
6. Hardware experiments.
7. Creators and license of the assets used in our paper.
8. Potential negative impact of our work.
9. Personal data/Human subjects discussion.

Please see the supplementary video for more qualitative results and failure cases
of our proposed PrivHAR network (with Rubiksnet backbone).

1 Light propagation and image formation model

We adopt the same image formation model as in previous works [2,18,10]. Specif-
ically, we model the light transport in the camera using a differentiable Fourier
optics model [7].

Figure 1 depicts our optical system, which consists of a camera with two thin
convex lenses and a phase mask (ϕ) between them. Assuming that the thin lens
has a focal length z at a distance d2 from the sensor, the relationship between
the in-focus distance and the sensor distance in the paraxial ray approximation
is given by the thin-lens equation: 1/z = 1/d1 + 1/d2. Therefore, an object at a
distance d1 in front of the lens appears in focus at a distance d2 behind the lens.
Assuming that the scene is at optical infinity, we first propagate the light emitted
by the point, represented as a spherical wave, to the lens. The complex-valued
wave field immediately before the lens is given by:

W (u, v) = exp
(
ik
√

u2 + v2 + s2
)
,

where k = 2π/λ is the wavenumber. The refractive optical element first delays
the phase of this incident wavefront by an amount proportional to the phase
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Fig. 1. Schematic diagram of the light propagation from the object at to the sensor
with the focal length d2. The phase of the spherical light wave coming from a scene
point is modulated by our designed phase mask and captured by the camera’s sensor.
We take the magnitude-square of the light intensity measured by the sensor to find the
values of the PSF H.

mask ϕ of the optical element at each point (u, v). Equivalently, this phase
transformation can be mathematically represented as

tϕ(u, v) = exp(ik(n(λ)− 1)ϕ(u, v)),

where n(λ) is the wavelength-dependent refractive index of the optical element
material.

The light wave continues to propagate to the camera lens, which induces the
following phase transformation [7]

tL(u, v) = exp

(
−i

k

2z
(u2 + v2)

)
.

We use a binary circular mask A(u, v) with diameter D to model the aperture
and block light in regions outside the open aperture. To find the electric field
immediately after the lens, we multiply the amplitude and phase modulations
of the refractive optical element and lens with the input electric field:

W̃ (u, v) = A(u, v)tϕ(u, v)tL(u, v)W (u, v).

Finally, the field propagates a distance d2 to the sensor with the transfer function
[7]:

T (fu, fv) = exp
[
ikd2

√
1− (λfu)2 − (λfv)2

]
,

where (fu, fv) are spatial frequencies. This transfer function is applied in the
Fourier domain as:

W̄ (u′, v′) = F−1
{
F

{
W̃ (u, v)

}
· T (fu, fv)

}
,

where F denotes the 2D Fourier transform. Since the sensor measures light
intensity, we take the magnitude-squared to find the values of the PSF H at
each position (u, v) as:

H(u′, v′) = |W̄ (u′, v′)|2.
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Simulated

Fig. 2. Modulation Transfer Function (MTF) [1] of the point-spread functions (PSFs).
The MTF is computed as the radially averaged magnitude spectrum of the PSF. The
PSFs compared are: Defocus PSF [16], random binary, our simulated PSF, and our cal-
ibrated PSF of our proof-of-concept system. The magnitude spectrum of the proposed
PSF decreases significantly for the entire frequency range indicating low invertibility
characteristics, especially in the high-frequency range.

2 PSF frequency analysis.

We additionally validate our proposed PSF using the modulation transfer func-
tion (MTF) metric [1]. The MTF is computed as the radially averaged magnitude
spectrum of the PSF. As observed in Fig. 2, the magnitude spectrum of the pro-
posed PSF decreases significantly for the entire frequency range indicating low
invertibility characteristics, especially in the high-frequency range. This explains
why our private images are more robust against face detection (high-frequency
textures) than skin color detection attacks. Also, observe that the simulated
PSF has lower invertibility than calibrated PSF. This is expected due to our
real system’s limitations.

3 Face recognition results.

In this work, we also measure privacy using face recognition. We use a Tensorflow
implementation‡ of the Additive Angular Margin Loss for Deep Face Recogni-
tion (ArcFace) network[3]. ArcFace is a recently published, efficient, and highly
effective face recognition network that incorporates margins in its loss function
to obtain highly discriminative features for face recognition.

We use the ArcFace network to test the face recognition performance on
images acquired with our optimized lens. We experimented on three datasets:
LFW [11], AgeDB-30 [14], and CFP-FP datasets[17]. We generate ROC curves

‡https://github.com/peteryuX/arcface-tf2

https://github.com/peteryuX/arcface-tf2
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(a) AgeDB-30 Dataset (b) CFP-FP Dataset

Fig. 3. Face recognition performance on images from (a) AgeDB-30 and (b) CFP-FP
datasets acquired with our optimized lens.

using three testing approaches for each dataset and compare them with the
original ArcFace model tested on the original “non-private” images. We refer to
the first approach as the “Pretrained model”, which uses the pretrained ArcFace
model to test the “private” version of each dataset. The second approach consists
of training the ArcFace model from scratch using the private version of the
MS-Celeb-1M dataset; we refer to such an approach as the “Trained model”.
Finally, in the “Finetuned model” approach, we first load the pretrained weights
of the ArcFace model on original “non-private” images; then, we performed fine-
tuning on the network with the private version of the MS-Celeb-1M dataset. We
presented the results on the LFW dataset in Fig. 3 (b) of the main manuscript,
and the results on the AgeDB-30 and CFP-FP dataset are shown in Fig. 3.
Similar to the main manuscript results, the ArcFace model performs poorly on
the “private” images generated by our optimized lens.

4 Precision-recall and ROC curves

To analyze the performance of the adversarial networks, we plot the receiver
operating characteristic (ROC) and Precision-Recall (PR) curves. In Fig. 4, we
show the ROC and PR curves of the adversarial network, which achieves the best
performance on the privacy-preserving images/videos acquired with PrivHAR
when using Rubiksnet as the backbone. For each curve, we show the area under
the curve (AUC), the random classifier (null hypothesis), and perfect classifier
performance for reference. We depict the random and perfect classifier with
dashed and solid gray lines, respectively. As observed, the AUC values of the
PR curves are very close to those obtained by a random classifier. Therefore,
based on Fisher’s exact test [20], the best adversarial network on our privacy-
protected images is not significantly different from the random classifier (p-value
< 0.01). In Fig. 5, we also show the corresponding PR curves obtained when
using C3D as the backbone for PrivHAR. We observed a similar behavior, i.e.,
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Fig. 4. Precision-recall curves when using Rubiksnet as backbone for PrivHAR.

the performance of AA is close to the random classifier. In addition, we also
show the receiver operating characteristic curves (ROC) in Fig. 6 when using
(a) Rubiksnet and (b) C3D as the backbone in our PrivHAR network. However,
note that the PA-HMDB51 dataset is imbalanced in the privacy attributes, and
ROC Curves can be optimistic on severely imbalanced classification problems
with few samples of the minority class [6,8]. Therefore, we made our principal
analysis of the performance of AA using PR curves in the main paper.

5 Deconvolution attacks details

In this work, we investigate the robustness of our proposed phase mask to de-
convolution attacks. In general, there are two scenarios: in the worst scenario,
an attacker has access to the camera and knows the set of Zernike coefficients
that form the surface profile ϕ, i.e., the PSF is known. Then, the attacker could
perform a non-blind deconvolution to reveal the identity of a person within the
scene. In a more realistic scenario, an attacker can access a large collection of
blur images acquired with our proposed camera but does not know the PSF, and
can train a blind deconvolution network. We explore both scenarios (blind and
non-blind deconvolution) and show the results in Fig. 5 of the main paper.

To test the robustness of our designed lens to blind deconvolution attacks, we
trained a deconvolution network (DeblurGAN [13]) with 37608 sharp and blur
(ours) images/frames from the HMDB51 dataset acquired with PrivHAR using
C3D and Rubiksnet backbones. We use the same default parameters for Deblur-
GAN and train the network during 300 epochs. As observed from the results
in the paper, reconstruction is challenging. The network can reconstruct some
objects; however, the face details are missed, and the network cannot recover
people’s identities.

https://github.com/VITA-Group/DeblurGANv2/blob/master/config/config.yaml
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Fig. 5. Precision-recall curves when using C3D as backbone for PrivHAR.

(a) Rubiksnet (b) C3D

Fig. 6. ROC curves when using (a) Rubiksnet, and (b) C3D as backbone for PrivHAR.

On the other hand, we also use a non-blind deconvolution approach (Wiener
deconvolution [4]) to try to recover the underlying scene. This approach also does
not work well for our proposed lens design, especially for a lens designed with
Rubiksnet as HAR backbone, as it has significantly more aberrations, making it
more robust.

6 Hardware experiments

Optical Architecture. Our proof-of-concept system uses an objective CANON
lens (CANON, EF-S 18-55 mm f/4-5.6 IS STM) to image the scene to an inter-
mediate plane. Then, the intermediate image plane is relayed onto two CANON
camera sensors (EOS M50, 24.1 MP APS-C) by a double 4f system consisting of
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Fig. 7. Proof-of-concept optical system. We build our optical architecture with two
CANON cameras, one objective CANON lens, three lenses, one beam splitter, and one
deformable mirror. For more details please see the supplementary video.

Lens 1 (L1), Lens 2 (L2), Lens 3 (L3) (Thorlabs, AC254-100-A), a beam split-
ter (BS) (Thorlabs, BS013 - 50:50), and a deformable mirror (DM) (Thorlabs,
DMP40-P01). We place the BS after Lens 1 to split and relay the incoming
wavefront to camera sensors 1 and 2. In this way, camera sensor 1 acquires the
No-privacy videos. We place the DM on the Fourier plane of Lens 1 and 3 to
introduce the spatial deformation and reflect the phase-encoded wavefront to
Lens 3. Finally, the phase-encoded scene is integrated by the camera sensor 2
and acquires privacy-protected video with a size of up to 6000 × 4000 pixels
(3.717µm ×3.717 µm). To calibrate the point spread function (PSF) induced
by the DM, we place a fiber optics (Ocean Insight, QR200-7-UV-BX) with a
kernel core of 200 µm at 1m from the CANON lens. Figure 7 shows pictures of
our proof-of-concept system with two cameras. For more details, please see the
supplementary video.

Quantitative Results. After calibration, we captured 282 videos in total,
141 privacy-protected, and 141 no-privacy videos, with eight different persons
(see section 9). We use a small set of captured privacy-protected videos with the
respective action ground truth labels to fine-tune our PrivHAR network for 30
epochs. Specifically, we use 75 privacy-protected videos for fine-tuning and 66
videos for testing. We obtained an action recognition accuracy of AC = 83.32 on
the testing set. Due to pandemic restrictions, we cannot acquire a larger-scale
video dataset in the lab. For now, our small-scale tests show results consistent
with our extensive experiments. As future work, we plan to build a privacy-
preserving video dataset using our proposed optical system, which allows us to
acquire both RGB and privacy-protected videos.
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Table 1. Assets descriptions used in our work.

Asset Name Type Reference Implementation License

Rubiksnet HAR Backbone [5] https://tinyurl.com/rubiksnet MIT
C3D HAR Backbone [19] https://tinyurl.com/c3dbackbone MIT

PA-HMDB51 Dataset [21] https://tinyurl.com/pa-hmdb51 Licensed Material
HMDB51 Dataset [12] https://tinyurl.com/hmdb51 CC BY 4.0
VISPR [15] https://tinyurl.com/vispr-dataset CC BY 4.0

DeblurGAN Neural Network [13] https://tinyurl.com/deblurganv2 BSD
ResNet-50 Neural Network [9] https://tinyurl.com/resnet-pytorch BSD 3-Clause
ArcFace Neural Network [9] https://github.com/peteryuX/arcface-tf2 MIT

Qualitative Results. Please see the supplementary video to see qualitative
results on acquired privacy-preserving videos with our proof-of-concept optical
system.

7 Creators and license of the assets used in our paper

We appropriately cited all the assets (datasets and codes) in our main paper and
supplementary document. In Table 1, we summarize the type, reference, used
implementation (or website), and license of the main assets used in this work.

8 Potential negative impact of our work

In this work, we aim at addressing one social concern in the vision community:
the development of privacy-preserving vision systems. We explore the design of a
lens for protecting privacy while performing human action recognition. Although
we did not identify a direct potential negative impact of our work, we think that
one attacker could adopt a similar approach and develop or simulate a camera to
acquire adversarial examples and attack other HAR networks to decrease their
performance.

9 Personal data/Human subjects discussion

In this work, we acquired videos from people doing actions in our Lab. In to-
tal, eight subjects with ages between 20 and 26 years old collaborated in the
acquisition of the videos with our prototype camera described in section 6. We
elaborated an informed consent document to explain our research and how we
would use their video data. The subjects who accepted participating in the
project signed a hard copy of the informed consent document and sent it to
us. No approval from the institutional review board (IRB) was required in the
country where we acquired the videos.

https://tinyurl.com/rubiksnet
https://tinyurl.com/c3dbackbone
https://tinyurl.com/pa-hmdb51
https://tinyurl.com/hmdb51
https://tinyurl.com/vispr-dataset
https://tinyurl.com/deblurganv2
https://tinyurl.com/resnet-pytorch
https://github.com/peteryuX/arcface-tf2
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