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Introduction

This supplementary document provides additional experiments, visualizations,
and implementation details of our work. Specifically, we include the following:

1. Implementation Details
2. Varying Masking Ratio
3. Varying Number of Patterns
4. White Noise vs. Uniform Noise
5. Reconstruction Visualizations
6. Self-attention Maps Visualizations
7. CAM Visualizations

1 Implementation Details

We generate the noise patterns offline by applying low-pass, high-pass, band-
pass, and band-stop filters to random noise. These filtering operations were im-
plemented in C/C++ code. The noise patterns are created as 2D images, which
are then concatenated into a NumPy array and will utilized during the MAE
pre-training process. For green and purple noise, we selected the standard devi-
ations of the Gaussian kernel as σ1 = 0.5 and σ2 = 2.0, respectively. For blue
and red noise, σ was randomly chosen for each 2D generated image between 0.5
and 2.0. These values were empirically found to be optimal in our experiments,
as variations in σ did not yield significant differences in performance. Future
work may further investigate the selection methodology for these parameters
and explore enhanced methods for generating color noise patterns.

During pre-training, masks were generated using Algorithm 1 (in the main
paper) with PyTorch. All experiments were conducted on 8 Nvidia A100-80G
GPUs for pre-training and fine-tuning, except for the semantic segmentation
task, which utilized 4 GPUs. To ensure a fair comparison, we used the same
75% masking ratio as the original MAE pre-trained [1]. Please refer to the next
sections for results when varying the masking ratio and number of noise patterns.
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(a) (b)

Fig. 1: Comparative analysis of Top-1 accuracy variations about different experimental
settings. (a) Illustrates the Top-1 accuracy against five distinct masking ratios, show-
casing how varying levels of masking influence the model’s performance and its memory
consumption per GPU during pre-training, represented by the size of the green circles.
(b) Depicts the Top-1 accuracy across different amounts of noise patterns, illustrating
their effect in accuracy. The results across both sets of plots indicate no overwhelming
values for either masking ratios or noise patterns that consistently maximize Top-1
accuracy, suggesting a nuanced influence of these parameters on model performance.

2 Varying Masking Ratio

Fig. 1 (a) and Tab. 1 (a) illustrate the impact of varying masking ratios on the
performance of our ColorMAE-G with ViT-B as the backbone. We conduct pre-
training for 300 epochs across different masking ratios: 20%, 50%, 75%, 85%, and
90%. Similarly to MAE [1], we find that 75% works well for both fine-tuning (Fig.
1(a) top) and linear probing (Fig. 1(a) bottom). In the figure, y-axes correspond
to ImageNet-1K validation accuracy Top-1 (%), and the memory per GPU used
during pre-training for each masking ratio is shown at the top. Tab. 1 (a) shows
more detailed information about the experiments, including the Top-1 and Top-5
accuracy metrics. In both the figure and the table, we show the memory used
during pre-training. As observed, while a 50% masking ratio shows competitive
fine-tuning performance, employing a 75% ratio is more memory-efficient and
yields superior linear probing results.

3 Varying number of patterns

Similarly, Fig. 1 (b) and Tab. 1 (b) present the performance of ColorMAE-G with
ViT-B when varying the number of noise patterns utilized during pre-training to
produce the binary masks with Algorithm 1. We perform supervised training to
evaluate the learned representations with end-to-end fine-tuning (Fig. 1 (b) top)
and linear probing (Fig. 1 (b) bottom) and report the ImageNet-1K validation
accuracy Top-1 (%). Tab. 1 (b) shows more detailed information about the ex-
periments, including memory usage per GPU during pre-training and Top-1 and
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Table 1: Quantitative analysis on ImageNet-1K classification tasks. We pre-train the
MAE or ColorMAE-G with 300 epochs on ImageNet-1K, and report the Top-1 and
Top-5 accuracy under the fully supervised fine-tuning and linear probing.

Fine-tuning Linear Prob. MemoryMasking Ratio Top-1 Top-5 Top-1 Top-5 GB
20 82.51 96.16 54.18 77.42 46.26
50 82.97 96.50 61.92 83.58 36.40
75 82.98 96.43 63.30 84.82 28.21
85 82.54 96.26 60.12 82.53 24.82
90 81.89 96.01 57.84 80.83 23.18

(a) ColorMAE-G with different
masking ratios: Similar to MAE,
we find 75% masking ratio leads
to the best downstream perfor-
mance.

Fine-tuning Linear Prob. MemoryNumber of
Patterns Top-1 Top-5 Top-1 Top-5 GB

64 82.98 96.40 63.27 84.51 27.44
512 83.00 96.43 62.43 84.08 27.55
3072 82.98 96.43 63.30 84.82 28.21
4096 82.85 96.43 63.16 84.33 28.45

(b) ColorMAE-G with different
noise patterns: We do not find
significant performance variations
when changing the pattern num-
bers.

Fine-tuning Linear ProbingRandom
Patterns Top-1 Top-5 Top-1 Top-5
Uniform 82.82 96.32 60.70 82.66
White 82.63 96.33 60.65 82.41

(c) MAE with different noises
for mask sampling: White
noise can achieve performance
comparable to that of uni-
form noise, which is the de-
fault noise used in MAE.

Fig. 2: Comparison of two randomly generated masks M using uniform noise U (first
column) and white noise W (second column). Despite their distinct noise origins, both
result in remarkably similar random masks, as shown on the left and exhibit analogous
pre-training loss, as illustrated on the right.

Top-5 accuracy metrics. The figure and the table show that naturally using more
patterns directly increases memory usage. However, significant performance vari-
ations are not observed when varying the number of noise patterns. For example,
employing only 64 green noise patterns of 256×256 spatial dimensions generally
yields satisfactory results. It consumes nearly the same amount of memory as
the original MAE [1] (27.44 GB) in our experiments. We decided to use 3072
noise patterns in all our experiments in the main paper as it provides the best
balance between fine-tuning and linear probing accuracy. Additionally, the re-
quired memory of 28.21 GB was within the capacity limits of the GPUs utilized.
However, fewer patterns can be employed without significant performance im-
pact.
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4 White Noise vs. Uniform Noise

Although white noise and uniform noise have different statistical properties, they
can generate similar binary random masks, as illustrated in Fig. 2; see M . In
our experiments, no significant differences were observed in the pre-training loss,
fine-tuning, or linear probing performance, as indicated in Tab. 1 (c). Therefore,
within the context of MAE, using either uniform or white noise for generating
binary masks yields comparable outcomes. Additionally, filtering operations can
be applied to both white and uniform noise to produce various noise colors,
generating analogous noise color patterns in our experiments.

5 Reconstruction Visualizations

In Fig. 3, we present additional visualizations of ImageNet validation images
reconstructed using our ColorMAE, which was pre-trained with our four distinct
types of masks: Blue, Green, Purple, and Red. For comparative analysis, we
also include results from Random Masking, as utilized in the original MAE [1].
The visualizations highlight that our proposed masks generate unique patterns,
leading ColorMAE to learn feature representations in distinct manners.

6 Self-attention Maps Visualizations

Fig. 4 presents supplementary self-attention map results for ColorMAE pre-
trained with our green masking approach (ColorMAE-G), in comparison with the
original MAE employing random masking. The attention maps are showcased on
images sourced from the ImageNet-1K, Microsoft COCO, and ADE20K datasets,
providing a comprehensive visual exploration across diverse data sets.

7 CAM Visualizations

Fig. 5 provides additional Class Activation Maps (CAM) of ViT-B after fine-
tuning the model on image classification tasks, initialized with ColorMAE-G pre-
training or conventional MAE pre-training. We employ EigenCAM [3] to high-
light the model focus areas. As we can observe, the CAMs demonstrate that
ColorMAE-G shows higher attention response on the foreground objects or peo-
ples compared to MAE, suggesting our proposed approach can learn more dis-
criminative visual representations.
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Fig. 3: Reconstruction results on ImageNet validation images from MAE pre-trained
during 300 epochs with random masking and our four generated masks: Blue, Green,
Purple, and Red.
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Fig. 4: Self-attention of the [CLS] tokens averaged across the heads of the last layer in
MAE pre-trained using random masking and our proposed Green masking approach
(ColorMAE-G). We show attention maps on images from Imagenet-1K [4](1st block),
Microsoft COCO [2](2nd block) and ADE20K [5](3rd block) datasets.
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Fig. 5: Comparative visualization of Class Activation Maps (CAM) generated with
EigenCAM [3] for ViT-B. We show CAM maps of the ViT-B pre-trained with MAE
(second row of each block) and our ColorMAE-G (third row of each block) on images
from ImageNet-1K (1st block), Microsoft COCO (2nd block), and ADE20K (3rd block)
datasets.
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